Inorg. Chem. 2004, 43, 57-71

Reactions of the Tetrahedral Clusters $[MCo_3(CO)_{12}]^-$ (M = Ru, Fe) with Functional Mono- and Diynes

Aldjia Choualeb,[†] Pierre Braunstein,^{*,†} Jacky Rosé,[†] and Richard Welter[‡]

Laboratoire de Chimie de Coordination (UMR 7513 CNRS), Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France, and Laboratoire DECMET (UMR 7513 CNRS), Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France

Received July 16, 2003

The tetrahedral cluster $[RuCo_3(CO)_{12}]^-$ reacts with various alkynes, including the new PhC=CC(0)NHCH₂C=CH (L¹), to afford the butterfly clusters [RuCo₃(CO)₁₀(μ_4 - η^2 -RC₂R')]⁻ (**1**, R = R' = C(O)OMe; **2**, R = H, R' = Ph; **3**, R = H, $R' = MeC = CH_2$; 4, R = H, $R' = CH_2OCH_2C = CH$; 5, R = H, $R' = CH_2NHC(O)C = CPh$), in which the ruthenium atom occupies a hinge position and the alkyne is coordinated in a μ_4 - η^2 fashion. Reaction of the anions 1-3 with $[Cu(NCMe)_4]BF_4$ led to selective loss of the 12e fragment Co(CO)⁻ to form $[RuCo_2(CO)_9(\mu_3-\eta^2-RC_2R')]$ (6, R = R' = C(O)OMe; 7, R = H, R' = Ph; 8, R = H, $R' = MeC = CH_2$). To prepare functionalized RuCo₃ or FeCo₃ clusters that could be subsequently condensed with a silica matrix via the sol-gel method, we reacted $[MCo_3(CO)_{12}]^-$ (M = Ru, Fe) with the alkyne PhC=CC(O)NH(CH₂)₃Si(OMe)₃ (L²) and obtained the butterfly clusters $[MCo_3(CO)_{10}(\mu_4-\eta^2-PhC_2C(O)NH(CH_2)_3Si(OMe)_3)]^-$ 9 and 10, respectively. Air-stable $[RuCo_3(CO)_{10}(\mu_4-\eta^2-Me_3SiC_2C)]$ CSiMe₃]⁻ (11) was obtained from 1,4-bis(trimethylsilyl)butadiyne and reacted with [Cu(NCMe)₄]BF₄ to give [RuCo₂- $(CO)_{9}(\mu_{3}-\eta^{2}-HC_{2}C \equiv CSiMe_{3})$ (12), owing to partial ligand proto-desilylation, and not the expected $[RuCo_{2}(CO)_{9}(\mu_{3}-\eta^{2}-HC_{2}C \equiv CSiMe_{3})]$ η^2 -Me₃SiC₂C=CSiMe₃)]. Reaction of 11 with [NO]BF₄ afforded, in addition to 12, [RuCo₃(CO)₉(NO)(μ_4 - η^2 -Me₃SiC₂C= CSiMe₃)] (13) owing to selective CO substitution on a wing-tip cobalt atom with NO. The thermal reaction of 11 with [AuCl(PPh₃)] led to replacement of a CO on Ru by the PPh₃ originating from [AuCl(PPh₃)] and afforded $[RuCo_3(CO)_9(PPh_3)(\mu_4-\eta^2-Me_3SiC_2C\equiv CSiMe_3)]^-$ (14), also obtained directly by reaction of 11 with one equivalent of PPh₃. Proto-desilylation of **11** using TBAF/THF–H₂O afforded [RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C=CH)]⁻ (**15**) which, by Sonogashira coupling with 1,4-diiodobenzene, yielded the dicluster complex [{[RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C= C)] $_{2}C_{6}H_{4}$ ²⁻ (16). The crystal structures of NEt₄·3a, NEt₄·4a, 6, NEt₄·11b, NEt₄·14, and [N(*n*-Bu)₄]·15a have been determined by X-ray diffraction. Preliminary results indicate the potential of silica-tethered alkyne mixed-metal clusters, obtained by the sol-gel method, as precursors to bimetallic particles.

Introduction

We are currently interested in the selective incorporation of functional alkynes into metal carbonyl clusters in order to obtain low oxidation state molecular precursors to surfaceanchored metal clusters that could lead to nanomaterials of controlled properties.^{1,2} A covalent linkage between the metal control of the anchoring process and prevent the metal leaching often associated with the presence of dative bonds between the ligand and the metal(s). Although the reactions of simpler alkynes with carbonyl clusters have long been investigated, the factors governing their selectivity are not fully understood.³ Various isomeric structures can be envisaged for the reaction products, and ways to chemically differentiate in the precursor cluster the various metal—metal bonds, which are reactive sites, include the use of bridging ligands, as recently explored with [Co₄(CO)₁₀(μ -dppy)] (dppy

cluster and the required functionality should enable a better

^{*} Author to whom correspondence should be addressed. E-mail: braunst@ chimie.u-strasbg.fr.

[†] Laboratoire de Chimie de Coordination.

[‡] Laboratoire DECMET.

 ⁽a) Schweyer, F.; Braunstein, P.; Estournès, C.; Guille, J.; Kessler, H.; Paillaud, J.-L.; Rosé, J. *Chem. Commun.* **2000**, 1271–1272. (b) Schweyer-Tihay, F.; Braunstein, P.; Estournès, C.; Guille, J. L.; Lebeau, B.; Paillaud, J.-L.; Richard-Plouet, M.; Rosé, J. *Chem. Mater.* **2003**, *15*, 57–62.

⁽²⁾ Braunstein, P.; Kormann, H.-P.; Meyer-Zaika, W.; Pugin, R.; Schmid, G. Chem. Eur. J. 2000, 6, 4637–4646.

= Ph₂PCH₂PPh₂ (dppm), Ph₂PNHPPh₂ (dppa), or (Ph₂P)₂N-(CH₂)₃Si(OEt)₃ (dppaSi)).⁴ An extension of these studies to related isoelectronic mixed-metal systems was felt particularly desirable,⁵ and we report here on the reactions of the tetrahedral clusters [MCo₃(CO)₁₂]⁻ (M = Ru, Fe) with functional alkynes and compare the results with those obtained with [Co₄(CO)₁₂] and its derivatives. Some of the resulting alkyne clusters were reacted with electrophilic reagents, such as [Cu(NCMe)₄]BF₄ or [NO]BF₄, to give neutral derivatives with higher solubility.

Furthermore, clusters linked through π -delocalized backbones have come under considerable scrutiny, owing to expectations that new structural, redox, and conductivity properties may result. The vast majority of such studies have involved the linking of identical homometallic cores,^{6–14} and since only few examples of heterometallic clusters linked by unsaturated bridges have been reported,^{15–17} we have used diynes to realize such a connection between RuCo₃ clusters.

Results and Discussion

The reaction between $[RuCo_3(CO)_{12}]^-$ and excess MeO-C(O)C=CC(O)OMe (dmad) in refluxing THF afforded the butterfly cluster **1** resulting from insertion of the alkyne into a Co-Co bond. A similar structure has been previously reported with PhC=CPh.¹⁸ When unsymmetrical alkynes of

the type HC=CR were reacted with $[RuCo_3(CO)_{12}]^-$, two isomers **a** and **b** were often obtained (Scheme 1) which differ

- (3) See for example: (a) Sappa, E.; Tiripicchio, A.; Braunstein, P. Chem. Rev. 1983, 83, 203-239. (b) Raithby, P. R.; Rosales, M. J. Adv. Inorg. Chem. Radiochem. 1985, 29, 169-247. (c) Chetcuti, M. J.; Fanwick, P. E.; Gordon, J. C. Inorg. Chem. 1991, 30, 4710-4717. (d) Waterman, S. M.; Humphrey, M. G.; Tolhurst, V.-A.; Bruce, M. I.; Low, P. J.; Hockless, D. C. R. Organometallics 1998, 17, 5789-5795. (e) Zhu, B.-H.; Zhang, W.-Q.; Zhao, Q.-Y.; Bian, Z.-G.; Hu, B.; Zhang, Y.-H.; Yin, Y.-Q.; Sun, J. J. Organomet. Chem. 2002, 650, 181-187.
- (4) Choualeb, A.; Braunstein, P.; Rosé, J.; Bouaoud, S. E.; Welter, R. Organometallics 2003, 22, 4405–4417.
- (5) Choualeb, A.; Rosé, J.; Braunstein, P.; Welter, R. Organometallics 2003, 22, 2688–2693.
- (6) Bruce, M. I.; Smith, M. E.; Zaitseva, N. N.; Skelton, B. W.; White, A. H. J. Organomet. Chem. 2003, 670, 170–177.
- (7) Worth, G. H.; Robinson, B. H.; Simpson, J. Organometallics 1992, 11, 3863–3874.
- (8) Wong, W.-Y.; Cheung, S.-H.; Lee, S.-M.; Leung, S.-Y. J. Organomet. Chem. 2000, 596, 36–45.
- (9) Osella, D.; Gambino, O.; Nevi, C.; Ravera, M.; Bertolino, D. Inorg. Chim. Acta 1993, 206, 155–161.
- (10) Fritch, J. R.; Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1980, 19, 559-561.
- (11) Dellaca, R. J.; Penfold, B. R.; Robinson, B. H.; Robinson, W. T.; Spencer, J. L. *Inorg. Chem.* **1970**, *9*, 2204–2211.
- (12) Dellaca, R. J.; Penfold, B. R. Inorg. Chem. 1971, 10, 1269-1275.
- (13) Bruce, M. I.; Williams, M. L.; Patrick, J. M.; White, A. H. J. Chem. Soc., Dalton Trans. 1985, 1229–1234.
- (14) Adams, C. J.; Bruce, M. I.; Horn, E.; Skelton, B. W.; Tiekink, E. R. T.; White, A. H. J. Chem. Soc., Dalton Trans. 1993, 3299–3312.
- (15) Lucas, N. T.; Notaras, E. G. A.; Cifuentes, M. P.; Humphrey, M. G. Organometallics 2003, 22, 284–301.

Scheme 1. Reaction of the Cluster [RuCo₃(CO)₁₂] – with Terminal Alkynes

in the orientation of the alkyne with respect to the Co–Ru vector. Surprisingly, no reaction was observed when $R = -CH_2Cl$ or $-(CH_2)_3C\equiv CH$ nor with PhC $\equiv CC(O)Cl$.

All reactions proceeded either in refluxing THF or acetone for a few hours and were monitored by IR spectroscopy while the color of the solution changed from red to violet. Recrystallization afforded clusters of the type [RuCo₃(CO)₁₀- $(\mu_4-\eta^2$ -HC₂R)]⁻ (R = Ph (2), MeC=CH₂ (3), CH₂OCH₂-C=CH (4), CH₂N(H)C(O)C=CPh (5)) in excellent yields (73–95%). The products have been characterized by IR and ¹H NMR spectroscopic methods, elemental analysis, and, in the case of **3a** and **4a**, by X-ray diffraction.

The new diyne ligand PhC=CC(O)NHCH₂C=CH (L¹), which contains internal and terminal carbon–carbon triple bonds, was prepared in two steps by the method outlined in eq 1 which involved treatment of phenylpropynoic acid with thionyl chloride, followed by the addition of propargylamine. The ligand was characterized by ¹H, ¹³C NMR, IR spectroscopy, and elemental analysis. The reactivity of internal

alkynes is lower than that of terminal alkynes, which in turn

- (16) Imhof, D.; Burckhardt, U.; Dahmen, K.-H.; Joho, F.; Nesper, R. Inorg. Chem. 1997, 36, 1813–1820.
- (17) Bruce, M. I.; Halet, J.-F.; Kahlal, S.; Low, P. J.; Skelton, B. W.; White, A. H. J. Organomet. Chem. **1999**, 578, 155–168.
- (18) Braunstein, P.; Rosé, J.; Bars, O. J. Organomet. Chem. 1983, 252, C101-C105.

Table 1. Selected Bond Distances [Å] and Bond Angles [deg] for the Anion 3a with Estimated Standard Deviations in Parentheses

			Moleo	cule A			
Ru(1)-Co(1)Ru(1)-Co(2)Ru(1)-Co(3)Ru(1)-C(6)Ru(1)-C(8)Ru(1)-C(9)Ru(1)-C(10)Ru(1)-C(12)	2.751(1) 2.541(2) 2.545(2) 2.17(1) 2.17(1) 1.87(1) 1.88(1) 2.216(9)	$\begin{array}{c} Co(1)-Co(2)\\ Co(1)-Co(3)\\ Co(1)-C(1)\\ Co(1)-C(2)\\ Co(1)-C(3)\\ Co(1)-C(3)\\ Co(1)-C(4)\\ Co(1)-C(11) \end{array}$	2.462(2) 2.464(2) 1.78(1) 1.74(1) 2.35(1) 2.32(1) 1.97(9)	Co(2)-C(4) Co(2)-C(5) Co(2)-C(6) Co(2)-C(11) Co(2)-C(12) Co(3)-C(3) Co(3)-C(7)	1.78(1) 1.74(1) 1.84(1) 2.067(8) 2.121(9) 1.78(1) 1.74(1)	Co(3)-C(8)Co(3)-C(11)Co(3)-C(12)C(11)-C(12)C(12)-C(13)C(12)-C(13)C(13)-C(14)C(13)-C(15)	1.83(1) 2.070(8) 2.070(8) 1.39(1) 1.49(1) 1.52(2) 1.30(1)
$\begin{array}{l} C(12)-Ru(1)-Co(2)\\ C(12)-Ru(1)-Co(3)\\ Co(2)-Ru(1)-Co(3)\\ C(12)-Ru(1)-Co(1)\\ Co(2)-Ru(1)-Co(1)\\ Co(3)-Ru(1)-Co(1)\\ C(11)-Co(1)-Co(2)\\ C(11)-Co(1)-Co(3)\\ Co(2)-Co(1)-Co(3)\\ C(11)-Co(1)-Ru(1)\\ Co(2)-Co(1)-Ru(1)\\ Co(3)-Co(1)-Ru(1)\\ Co(3)-Co(1)-Ru(1)\\ \end{array}$	$52.4(2) \\51.0(2) \\87.95(4) \\68.2(2) \\55.28(4) \\55.29(4) \\54.3(2) \\54.3(2) \\91.59(6) \\73.8(2) \\58.03(4) \\58.10(4)$	$\begin{array}{c} C(11)-Co(2)-C(12)\\ C(11)-Co(2)-Co(1)\\ C(12)-Co(2)-Ru(1)\\ Co(1)-Co(2)-Ru(1)\\ C(11)-Co(3)-C(12)\\ C(11)-Co(3)-Co(1)\\ C(12)-Co(3)-Ru(1)\\ Co(1)-Co(3)-Ru(1)\\ Co(1)-Co(3)-Ru(1)\\ O(1)-C(1)-Co(1)\\ O(2)-C(2)-Co(1)\\ O(10)-C(10)-Ru(1)\\ C(12)-C(11)-Co(1)\\ \end{array}$	$\begin{array}{c} 38.8(3) \\ 50.5(3) \\ 55.9(2) \\ 66.69(4) \\ 39.3(3) \\ 50.5(3) \\ 56.3(3) \\ 66.61(4) \\ 177.8(10) \\ 177.1(12) \\ 178.4(9) \\ 113.2(6) \end{array}$	$\begin{array}{l} O(3)-C(3)-Co(1)\\ O(3)-C(3)-Co(3)\\ O(4)-C(4)-Co(1)\\ O(4)-C(4)-Co(2)\\ O(5)-C(5)-Co(2)\\ O(6)-C(6)-Co(2)\\ O(6)-C(6)-Ru(1)\\ O(7)-C(7)-Co(3)\\ O(8)-C(8)-Co(3)\\ O(8)-C(8)-Ru(1)\\ O(9)-C(9)-Ru(1)\\ C(12)-C(11)-Co(2)\\ \end{array}$	$\begin{array}{c} 126.9(9)\\ 161.0(1)\\ 128.3(9)\\ 159.0(1)\\ 178.6(11)\\ 145.9(9)\\ 135.6(8)\\ 175.0(13)\\ 144.6(9)\\ 136.9(8)\\ 179.0(1)\\ 72.7(5) \end{array}$	$\begin{array}{c} Co(1)-C(11)-Co(2)\\ C(12)-C(11)-Co(3)\\ Co(1)-C(11)-Co(3)\\ Co(2)-C(11)-Co(3)\\ C(11)-C(12)-C(13)\\ C(11)-C(12)-Co(3)\\ C(11)-C(12)-Co(2)\\ C(13)-C(12)-Co(2)\\ Co(3)-C(12)-Co(2)\\ Co(3)-C(12)-Co(2)\\ C(11)-C(12)-Ru(1)\\ Co(3)-C(12)-Ru(1)\\ Co(2)-C(12)-Ru(1)\\ \end{array}$	75.2(3) 70.4(5) 75.2(3) 117.2(4) 125.4(8) 70.4(5) 68.5(5) 119.7(6) 114.8(4) 104.8(6) 72.8(3) 71.7(3)
			Moleo	cule B			
$\begin{array}{l} Ru(2)-Co(4)\\ Ru(2)-Co(5)\\ Ru(2)-Co(6)\\ Ru(2)-C(29)\\ Ru(2)-C(31)\\ Ru(2)-C(32)\\ Ru(2)-C(33) \end{array}$	2.724(2) 2.573(2) 2.542(1) 2.11(1) 2.28(1) 1.85(1) 1.90(1)	$\begin{array}{c} Ru(2)-C(35)\\ Co(4)-Co(5)\\ Co(4)-Co(6)\\ Co(4)-C(24)\\ Co(4)-C(25)\\ Co(4)-C(25)\\ Co(4)-C(26)\\ Co(4)-C(34) \end{array}$	2.174(8) 2.487(2) 2.433(2) 1.80(1) 1.78(1) 2.02(1) 1.947(8)	$\begin{array}{c} Co(5)-C(27)\\ Co(5)-C(28)\\ Co(5)-C(29)\\ Co(5)-C(34)\\ Co(5)-C(35)\\ Co(6)-C(35)\\ Co(6)-C(26)\\ Co(6)-C(30) \end{array}$	$\begin{array}{c} 1.81(1) \\ 1.72(1) \\ 1.93(1) \\ 2.081(9) \\ 2.056(8) \\ 1.83(1) \\ 1.75(1) \end{array}$	$C_{0}(6)-C(31) C_{0}(6)-C(34) C_{0}(6)-C(35) C(34)-C(35) C(35)-C(36) C(36)-C(37) C(36)-C(38)$	$\begin{array}{c} 1.79(1) \\ 2.071(9) \\ 2.121(8) \\ 1.45(1) \\ 1.48(1) \\ 1.44(1) \\ 1.32(1) \end{array}$
$\begin{array}{l} C(35)-Ru(2)-Co(6)\\ C(35)-Ru(2)-Co(5)\\ Co(6)-Ru(2)-Co(5)\\ C(35)-Ru(2)-Co(4)\\ Co(6)-Ru(2)-Co(4)\\ Co(5)-Ru(2)-Co(4)\\ C(34)-Co(6)-C(35)\\ C(34)-Co(6)-Co(4)\\ C(35)-Co(6)-Ru(2)\\ Co(4)-Co(6)-Ru(2)\\ C(34)-Co(4)-Co(6)\\ C(34)-Co(4)-Co(5)\\ \end{array}$	$\begin{array}{c} 52.7(2)\\ 50.5(2)\\ 87.63(5)\\ 68.7(2)\\ 54.90(4)\\ 55.92(5)\\ 40.6(3)\\ 50.4(2)\\ 54.7(2)\\ 66.36(5)\\ 55.1(3)\\ 54.3(3)\\ \end{array}$	$\begin{array}{l} Co(6)-Co(4)-Co(5)\\ C(34)-Co(4)-Ru(2)\\ Co(6)-Co(4)-Ru(2)\\ Co(5)-Co(4)-Ru(2)\\ C(34)-Co(5)-Co(4)\\ C(35)-Co(5)-Ru(2)\\ Co(4)-Co(5)-Ru(2)\\ Co(4)-Co(5)-Ru(2)\\ O(24)-C(24)-Co(4)\\ O(25)-C(25)-Co(4)\\ O(26)-C(26)-Co(4)\\ O(26)-C(26)-Co(6)\\ O(27)-C(27)-Co(5)\\ \end{array}$	92.06(6) 75.5(2) 58.74(4) 58.96(4) 49.5(2) 54.7(2) 65.12(5) 176.8(10) 178.3(13) 133.6(8) 148.4(9) 174.8(12)	$\begin{array}{l} O(28)-C(28)-Co(5)\\ O(29)-C(29)-Co(5)\\ O(29)-C(29)-Ru(2)\\ O(30)-C(30)-Co(6)\\ O(31)-C(31)-Co(6)\\ O(31)-C(31)-Ru(2)\\ O(32)-C(32)-Ru(2)\\ O(33)-C(33)-Ru(2)\\ C(35)-C(34)-Co(6)\\ C(35)-C(34)-Co(6)\\ C(35)-C(34)-Co(6)\\ C(35)-C(34)-Co(5)\\ \end{array}$	$\begin{array}{c} 172.7(10)\\ 140.0(9)\\ 141.2(9)\\ 176.1(11)\\ 150.9(9)\\ 132.8(8)\\ 173.9(11)\\ 179.0(11)\\ 71.5(5)\\ 110.0(5)\\ 74.5(3)\\ 68.5(5) \end{array}$	$\begin{array}{l} Co(4)-C(34)-Co(5)\\ Co(6)-C(34)-Co(5)\\ C(34)-C(35)-C(36)\\ C(34)-C(35)-Co(6)\\ C(34)-C(35)-Co(6)\\ Co(5)-C(35)-Co(6)\\ C(34)-C(35)-Ru(2)\\ C(36)-C(35)-Ru(2)\\ Co(5)-C(35)-Ru(2)\\ Co(6)-C(35)-Ru(2)\\ \end{array}$	76.2(3) 117.1(3) 123.5(8) 70.3(5) 67.9(5) 116.0(4) 105.7(5) 130.5(7) 74.9(3) 72.6(3)

are less reactive than acetylene.¹⁹ Thus, as expected, the diyne L^1 reacted with $[RuCo_3(CO)_{12}]^-$ selectively through its C=CH triple bond. This was established by ¹H NMR spectroscopy of 5 (see Scheme 1 and below).

The IR spectra of clusters 2-5 display a similar pattern despite the diversity of alkynes used. Strong terminal carbonyl absorption bands are found between 2059 and 1970 cm⁻¹ while the bridging carbonyls absorb between 1833 and 1817 cm⁻¹. In the IR spectra of NEt₄ \cdot **1** and NEt₄ \cdot **5**, an additional absorption band at 1712 or 1646 cm⁻¹ is characteristic of the ester or amide carbonyl, respectively. The ¹H NMR spectra of clusters NEt₄·1-NEt₄·5 show, in addition to the signals for the NEt₄⁺ cation, typical resonances for the hydrogen atoms of the alkyne-derived ligand. The hydrogen atoms in the $CH^{A}H^{B}=C(CH_{3})$ moiety of 3 are chemically different and present an ABX₃ spin system, like in the free alkyne, but the resolution of the signals did not allow extraction of the coupling constants. The singlets around δ 8.17–8.84 in the ¹H NMR spectra of NEt₄·2– NEt₄•5 are assigned to the acetylenic protons. Their downfield shift is typical of hydrogen atoms bound to carbons interacting in a σ or π manner with metals.^{3e,5} In addition, two singlets in this range are observed in the case of the anionic clusters 2 and 3, which correspond to the formation of two isomers a and b, respectively (Scheme 1). These could not be separated by column chromatography. However, crystals of NEt₄·3 with two different morphologies were obtained, which correspond to the two isomers 3a and 3b. ¹H NMR experiments carried out on two manually separated samples show that the more deshielded ¹H NMR signal should be assigned to the Co-bound CH proton. The isomer identified by X-ray diffraction was 3a, and crystals of 3b were not suitable for X-ray diffraction. Clusters NEt₄•2a,b were also isolated from the reaction of $[RuCo_3(CO)_{12}]^-$ with PhC=CC(O)OH owing to decarboxylation of this alkyne under reflux. For NEt₄•4 and NEt₄•5, only one isomer was observed and the cluster identified by X-ray diffraction, NEt₄. 4a, has the CH group attached to Co, not to Ru, whereas, for NEt_4 .5, we cannot state which isomer was formed.

Molecular Structures of NEt₄·3a and NEt₄·4a. Selected bond distances and angles are listed in Tables 1 and 2 and views of the molecular structures are shown in Figures 1 and 2, respectively. These clusters possess a RuCo₃ butterfly core with the ruthenium atom in a hinge position. In contrast,

⁽¹⁹⁾ Lucas, N. T.; Humphrey, M. G.; Healy, P. C.; Williams, M. L. J. Organomet. Chem. 1997, 545–546, 519–530.

Figure 1. View of the molecular structure of the anionic cluster in **3a**. Hydrogen atoms have been omitted for clarity.

Table 2. Selected Bond Distances [Å] and Bond Angles [deg] for the

 Anion 4a with Estimated Standard Deviations in Parentheses

2.754(1)	Co(2) - C(4)	1.745(3)
2.570(1)	Co(2) - C(5)	1.793(3)
2.531(1)	Co(2) - C(6)	1.889(3)
2.100(3)	Co(2) - C(11)	2.073(2)
2.222(3)	Co(2) - C(12)	2.047(2)
1.909(3)	Co(3) - C(3)	1.817(3)
1.880(3)	Co(3) - C(7)	1.755(3)
2.171(3)	Co(3) - C(8)	1.824(3)
2.4935(9)	Co(3) - C(11)	2.098(2)
2.435(1)	Co(3)-C(12)	2.134(2)
1.788(3)	C(11)-C12	1.404(3)
1.778(3)	C(12)-C(13)	1.501(3)
2.052(3)	C(14) - C(15)	1.469(4)
1.961(3)	C(15)-C(16)	1.173(4)
50.29(6)	O(3)-C(3)-Co(3)	149.0(2)
53.31(6)	O(4) - C(4) - Co(2)	174.0(3)
88.33(1)	O(5) - C(5) - Co(2)	177.5(3)
67.75(6)	O(6) - C(6) - Co(2)	140.0(2)
55.73(1)	O(6) - C(6) - Ru(1)	139.9(2)
54.66(2)	O(7) - C(7) - Co(3)	178.8(3)
53.87(7)	O(8) - C(8) - Co(3)	149.3(2)
55.77(6)	O(8) - C(8) - Ru(1)	133.8(2)
92.30(4)	O(9) - C(9) - Ru(1)	179.0(3)
74.23(7)	O(10) - C(10) - Ru(1)	179.2(2)
58.39(3)	C(12)-C(11)-Co(1)	110.8(2)
58.01(1)	C(12)-C(11)-Co(2)	69.0(1)
39.86(9)	Co(1) - C(11) - Co(2)	76.32(8)
49.82(7)	C(12)-C(11)-Co(3)	72.0(1)
76.93(6)	Co(1) - C(11) - Co(3)	73.63(7)
54.70(6)	Co(2) - C(11) - Co(3)	116.9(1)
65.88(3)	C(11) - C(12) - C(13)	123.1(2)
38.74(9)	C(11)-C(12)-Co(3)	69.2(1)
50.59(6)	C(13) - C(12) - Co(3)	118.9(2)
74.87(6)	C(11)-C(12)-Co(2)	71.1(1)
77.39(6)	C(13) - C(12) - Co(2)	124.1(2)
54.66(6)	Co(3) - C(12) - Co(2)	116.4(1)
67.33(1)	C(11) - C(12) - Ru(1)	107.2(2)
179.3(3)	C(13) - C(12) - Ru(1)	129.3(2)
179.5(3)	Co(3) - C(12) - Ru(1)	72.02(7)
133.2(2)	Co(2) - C(12) - Ru(1)	75.01(8)
	$\begin{array}{l} 2.754(1)\\ 2.570(1)\\ 2.531(1)\\ 2.531(1)\\ 2.100(3)\\ 2.222(3)\\ 1.909(3)\\ 1.880(3)\\ 2.171(3)\\ 2.4935(9)\\ 2.435(1)\\ 1.788(3)\\ 1.778(3)\\ 2.052(3)\\ 1.961(3)\\ \\ \hline 50.29(6)\\ 53.31(6)\\ 88.33(1)\\ 67.75(6)\\ 92.30(4)\\ 74.23(7)\\ 55.77(6)\\ 92.30(4)\\ 74.23(7)\\ 55.77(6)\\ 92.30(4)\\ 74.23(7)\\ 58.39(3)\\ 58.01(1)\\ 39.86(9)\\ 49.82(7)\\ 76.93(6)\\ 54.70(6)\\ 65.88(3)\\ 38.74(9)\\ 50.59(6)\\ 74.87(6)\\ 77.39(6)\\ 54.66(6)\\ 67.33(1)\\ 179.3(3)\\ 179.5(3)\\ 133.2(2)\\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

the cobalt atom occupies a wingtip position in the related cluster $[Ru_3Co(CO)_{11}(\mu_4-\eta^2-PhC_2Ph)]^{-20}$ In other mixed-metal anionic clusters with butterfly core structures, such as

Figure 2. View of the molecular structure of the anionic cluster in **4a**. Hydrogen atoms have been omitted for clarity.

 $[Ru_3M(CO)_{10}Cp(\mu_4-\eta^2-MeC_2Me)]^-$ (M = W, Mo), the metal atom M always occupies a hinge position,²¹ as found in 1-5. The alkyne ligand bridges all four metals in a μ_4 - η^2 fashion, lying parallel to the Ru-Co(1) bond. This arrangement completes an octahedral core structure consisting of the four metals and the two acetylenic carbon atoms. With an electron count of 60e, clusters 1-5 appear electron deficient, since an M₄ butterfly cluster obeying the EAN rule would require 62 electrons. However, considering 1-5 as octahedral RuCo₃C₂ clusters, their electron count is consistent with Wade's rules which predict a closo structure.²² The nonbonding distances between the cobalt atoms Co(2) and Co-(3) in **3a** and **4a** are 3.53 and 3.55 Å and the dihedral angles between the butterfly wings are 115.3° and 120.4°, respectively. The acetylenic protons have been located in both cases.

Bond lengths within the metal framework are typical of butterfly structures involving these metals. The Ru(1)– Co(1) distance is the longest of the Ru–Co distances, a general feature for metal–metal distances involving the metals in the hinge. There are two different, almost identical molecules, **A** and **B**, in the asymmetric unit of NEt₄·**3a**. The carbonyl ligands C(3)O(3), C(4)O(4), C(6)O(6), and C(8)-O(8) in molecule **3aA** conform to the semibridging category of Crabtree–Lavin, and the other carbonyls are terminal, whereas in **4**, C(3)O(3) and C(6)O(6) are bridging between Co(1), Co(3) and Ru(1), Co(2), respectively while C(8)-O(8) is semibridging between Ru(1) and Co(3).²³ Owing to disorder or high thermal agitation, the NEt₄ group in molecule **3aB** has been idealized and the distances N–C and C–C have been fixed at 1.53 and 1.58 Å, respectively.

Synthesis of the Neutral Trinuclear Clusters 6-8 from the Anionic Clusters 1-3. In contrast to $[RuCo_3(CO)_{12}]^-$, the anionic clusters 1-3 did not lead to cluster expansion upon reaction with $[Cu(NCMe)_4]BF_4$ but rather to selective fragmentation with loss of the 12e fragment $Co(CO)^-$ to give the trinuclear alkyne-clusters 6-8, as established by an X-ray

(23) Crabtree, R. H.; Lavin, M. Inorg. Chem. 1986, 25, 805-812.

⁽²⁰⁾ Benali-Baitich, O.; Daran, J.-C.; Jeannin, Y. J. Organomet. Chem. 1988, 344, 393–400.

⁽²¹⁾ Cazanoue, M.; Lugan, N.; Bonnet, J.-J.; Mathieu, R. Organometallics 1988, 7, 2480–2486.

⁽²²⁾ Wade, K, Adv. Inorg. Chem. Radiochem. 1976, 18, 1.

diffraction study of $6^{.18,24}$ In contrast to 6, where the alkyne substituents are identical, two isomers of clusters 7 and 8 were obtained which differ by the orientation of the alkyne (Scheme 2). The infrared spectrum of 6 contains, in addition

Scheme 2

to the terminal and bridging carbonyl absorption bands, an absorption at 1720 cm⁻¹ characteristic of the ester function. The ¹H NMR spectrum of **6** reveals two singlets for the chemically different methyl groups of the dmad ligand. In the case of **7** and **8**, the ¹H NMR spectra contain two singlets for the acetylenic hydrogen at 7.97, 9.59 and 7.83, 9.36 ppm, respectively. These singlets suggest the presence of isomers **a** and **b** (Scheme 2). For the MeC=CH₂ moiety in **8**, two resonances are observed for the methyl group (two isomers), and four resonances for the olefinic hydrogen atoms (ABX₃ spin system). These two isomers could not be separated.

In each of the compounds 1, 2-6 and 8 an organic function remains available which could be used for the subsequent functionalization of the coordinated ligands. Unfortunately, attempts to hydrosilylate the C=C or a C=O double bond of 3 and 6, respectively, with HSi(OMe)₃²⁵ or HSiCl₃²⁶ in the presence of H₂PtCl₆ or [Rh(diphos)(NBD)]-BF₄, as catalysts, have not yet been successful.

Molecular Structure of $[RuCo_2(CO)_9{\mu_3-\eta^2-MeOC(O)-C_2C(O)OMe}]$ (6). Crystals suitable for X-ray structure analysis were obtained by recrystallization from hexane at

(26) Lindner, E.; Salesch, T. J. Organomet. Chem. 2001, 628, 151-154.

Figure 3. View of the molecular structure of the cluster **6**. Hydrogen atoms have been omitted for clarity.

Table 3. Selected Bond Distances [Å] and Bond Angles [deg] for **6** with Estimated Standard Deviations in Parentheses

Co(1)-Co(2)	2.495(1)	Co(2)-C(10)	2.040(5)
Co(1) - C(1)	1.828(7)	Co(2) - C(11)	2.039(6)
Co(1) - C(2)	1.842(7)	Ru•••C(6)	2.386(7)
Co(1) - C(3)	1.788(7)	Ru-C(7)	1.971(7)
Co(1) - C(10)	1.942(6)	Ru-C(8)	1.906(7)
Co(1)-Ru	2.726(1)	Ru-C(9)	1.921(7)
Co(2)-Ru	2.585(1)	Ru-C(11)	2.084(6)
Co(2) - C(4)	1.809(8)	C(10) - C(11)	1.372(8)
Co(2) - C(5)	1.766(8)	C(11) - C(12)	1.502(9)
Co(2) - C(6)	1.815(7)	C(14) - C(10)	1.492(8)
Co(2)-Co(1)-Ru	59.16(3)	O(6) - C(6) - Ru	130.7(5)
Co(2) - Co1 - C(10)	53.0(2)	O(7) - C(7) - Ru	177.8(6)
Ru - Co(1) - C(10)	73.2(2)	O(8)-C(8)-Ru	179.2(6)
Co(1)-Co(2)-Ru	64.88(3)	O(9)-C(9)-Ru	175.2(6)
C(10)-Co(2)-Co(1)	49.5(2)	C(11) - C(10) - C14	124.1(6)
C(11)-Co(2)-Co(1)	73.1(2)	C(11)-C(10)-Co(1)	109.5(4)
C(10)-Co(2)-Ru	75.2(2)	C(14)-C(10)-Co1	125.7(4)
C(11)-Co(2)-Ru	51.9(2)	C(11)-C(10)-Co(2)	70.3(3)
Co(2)-Ru-Co(1)	55.95(3)	C(14) - C(10) - Co(2)	125.6(4)
C(11)-Ru-Co(1)	67.5(2)	Co(1) - C(10) - Co(2)	77.5(2)
C(11)-Ru-Co(2)	50.4(2)	C(10)-C(11)-C(12)	124.0(5)
O(1) - C(1) - Co(1)	178.9(7)	C(10)-C(11)-Co(2)	70.3(3)
O(2) - C(2) - Co(1)	176.6(7)	C(12)-C(11)-Co(2)	127.8(4)
O(3)-C(3)-Co1	175.9(6)	C(10)-C(11)-Ru	109.7(4)
O(4) - C(4) - Co(2)	179.0(8)	C(12)-C(11)-Ru	125.3(4)
O(5)-C(5)-Co(2)	176.6(6)	Co(2)-C(11)-Ru	77.6(2)
O(6)-C(6)-Co(2)	154.5(6)		

-30 °C. A view of the molecular structure is depicted in Figure 3. Selected bond lengths and angles are presented in Table 3. The ruthenium and cobalt atoms form a triangle in which all the metal-metal distances are different but within the range of typical Ru–Co and Co–Co single bonds. The carbonyl C(6)O(6) is the only one to be semibridging, namely, between Ru and Co(2): Co(2)–C(6) = 1.815(7) Å, Co(2)–C(6)–O(6) = 154.5(6)°, Ru···C(6) = 2.386(7) Å. The alkyne ligand is coordinated in a classical μ_3 - η^2 fashion over the metal triangle, as observed in [RuCo₂(CO)₉- $(\mu_3-\eta^2$ -PhC₂Ph]¹⁸ and [Ru₂Ir(CO)₉($\mu_3-\eta^2$ -PhC₂Ph]^{-.27} The C(10)–C(11) bond is almost parallel to the Ru–Co(1) edge [C(10)–Co(1)–Ru–C(11) = 0.1(3)°]. Interestingly, in the related [FeCo₂(CO)₉($\mu_3-\eta^2$ -EtC₂Et)] cluster, the alkyne is also bonded in a $\mu_3-\eta^2$ mode but in contrast to **6** it is parallel to

^{(24) (}a) Braunstein, P.; Rosé, J.; Dedieu, A.; Dusausoy, Y.; Mangeot, J.-P.; Tiripicchio, A.; Tiripicchio-Camellini, M, J. Chem. Soc., Dalton Trans. 1986, 225–234. (b) Braunstein, P.; Rosé, J.; Tiripicchio, A.; Tiripicchio-Camellini, M. J. Chem. Soc., Dalton Trans. 1992, 911–920. (c) Braunstein, P.; Rosé, J. Inorg. Synth. 1989, 26, 356–360.

⁽²⁵⁾ Lindner, E.; Enderle, A.; Baumann, A. J. Organomet. Chem. 1998, 558, 235–237.

⁽²⁷⁾ Ferrand, V.; Süss-Fink, G.; Neels, A.; Stoeckli-Evans, H. Eur. J. Inorg. Chem. 1999, 853–862.

the Co–Co vector.²⁸ The alkyne carbon–carbon bond length of 1.372(8) Å compares with that in [RuCo₂(CO)₉(μ_3 - η^2 -PhC₂Ph)] (1.370(3) Å)¹⁸ and in [Ru₂Ir(CO)₉(μ_3 - η^2 -PhC₂Ph)]⁻ (1.363(11) Å).²⁷ Cluster **6** has the expected electron count of 48e for trinuclear clusters which obey the EAN rule. It also corresponds to a 7 skeletal electron pair *nido*-octahedral cluster (square-based pyramid) constituted by the metals and C(10) and C(11).²²

Reactions of the Tetrahedral RuCo₃ and FeCo₃ Clusters with Alkoxysilyl-Functionalized Alkynes. With the aim of incorporating a functional alkyne in a RuCo₃ or FeCo₃ cluster that could be subsequently condensed in a silica matrix via the sol–gel method, we reacted clusters [Ru-Co₃(CO)₁₂][–] and [FeCo₃(CO)₁₂][–] with the recently prepared alkyne PhC=CC(O)NH(CH₂)₃Si(OMe)₃ (L²).⁴ This afforded the anionic clusters **9** and **10**, respectively, which were identified by their IR and NMR spectra and elemental analysis. Their ¹H NMR spectra are similar and show two

sets of signals in a 1:1 ratio, which correspond to the formation of two isomers which could not be separated but are reasonably assumed to correspond to the two possible orientations of the alkyne with respect to the Co–M edge, as indicated with **9a,b** and **10a,b**. The structure of these compounds was deduced from their spectroscopic properties and by analogy with the structurally characterized clusters **3** and **4** and the analogous cluster [FeCo₃(CO)₁₀(μ_4 - η^2 -PhC₂-Ph)]⁻.²⁹ The IR spectra of **9** and **10** contain, besides the terminal and bridged carbonyl absorption bands, an absorption band at 1612 and 1637 cm⁻¹, respectively, which is characteristic of the amide carbonyl. We are currently evaluating these Si(OMe)₃-containing clusters as precursors to sol–gel materials.

Reaction of RuCo₃ Clusters with a Protected Diyne. Reaction of [NEt₄][RuCo₃(CO)₁₂] with 1,4-bis(trimethylsilyl)butadiyne afforded in good yield the expected butterfly, air-stable cluster [NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂-

Figure 4. View of the molecular structure of the anionic cluster in 11b. Hydrogen atoms have been omitted for clarity.

 $C \equiv CSiMe_3$] (NEt₄·11) in two isomeric forms 11a and 11b, in a 2:3 ratio. The identity of 11 was deduced from analytical

and spectroscopic data and confirmed by a single-crystal X-ray diffraction study. The cluster contains an uncomplexed C≡C triple bond, but no IR absorption was found in the ν (C=C) region. The ¹H NMR spectrum contained four resonances at δ 0.035, 0.094, 0.108, and 0.240 for the two SiMe₃ groups of the two isomers. The molecular structure of 11b, shown in Figure 4, is similar to that of 3a and 4a. The nonbonding Co(2)···Co(3) distance is 3.54(1) Å, and the dihedral angle between the butterfly wings is $114.9(2)^{\circ}$. The refinement of the X-ray data led to consider the positions MM1 and MM2 as disordered, with occupancy factors of Ru 0.43, Co 0.57 and Ru 0.57, Co 0.43, respectively. The Co(2)-C(4), Co(2)-C(6), Co(3)-C(3), and Co(3)-C(8)distances of 1.87(1), 1.77(1), 1.79(1), and 1.88(1) Å, respectively, are considerably shorter than the MM2-C(4), MM1-C(6), MM2-C(3), and MM1-C(8) distances of 2.08(1), 2.48(1), 2.31(1), and 2.03(1), respectively, which suggests that C(3)O(3), C(4)O(4), C(6)O(6), and C(8)O(8) occupy semibridging positions (Table 4). The six remaining carbonyl ligands are terminal.

Complexation of $[Co_2(CO)_8]$ or $[Pt(C_2H_4)(PPh_3)_2]$ to the free C(13)=C(14) triple bond of **11** could not be achieved, probably for steric reasons.

Reaction of NEt₄·11 with [Cu(NCMe)₄]BF₄. This reaction yielded a red product, as observed with clusters 1-3 which afforded the triangular clusters 6-8, respectively. We observed by ¹H NMR two SiMe₃ resonances at δ 0.15 and 0.19 in addition to two singlets at δ 8.02 and 9.48, characteristic of the hydrogen atoms bound to carbon atoms

 ⁽²⁸⁾ Aime, S.; Milone, L.; Osella, D.; Tiripicchio, A.; Manotti-Lanfredi, A. M. *Inorg. Chem.* **1982**, *21*, 501–505.
 (29) Cooke, C. G.; Mays, M. J. J. Organomet. Chem. **1974**, *74*, 449–455.

⁽²⁹⁾ Cooke, C. G.; Mays, M. J. J. Organomet. Chem. 1974, 74, 449-455.

Table 4. Selected Bond Distances [Å] and Bond Angles [deg] for 11

 with Estimated Standard Deviations in Parentheses

MM1-Co(2)	2.484(2)	Co(2) - C(4)	1.87(1)
MM1-Co(3)	2.512(2)	Co(2) - C(5)	1.73(2)
MM1-C(6)	2.48(1)	Co(2) - C(6)	1.77(1)
MM1-C(8)	2.03(1)	Co(2) - C(11)	2.128(9)
MM1-C(9)	1.84(1)	Co(2) - C(12)	2.065(9)
MM1-C(10)	1.81(1)	Co(3) - C(3)	1.79(1)
MM1-C(11)	2.11(1)	Co(3) - C(7)	1.77(1)
MM2-Co(2)	2.545(2)	Co(3) - C(8)	1.88(1)
MM2-Co(3)	2.487(2)	Co(3) - C(11)	2.069(9)
MM2-C(1)	1.856(9)	Co(3)-C(12)	2.101(9)
MM2-C(2)	1.81(1)	C(11) - C(12)	1.41(1)
MM2-C(3)	2.31(1)	C(12) - C(13)	1.45(1)
MM2-C(4)	2.08(1)	C(13) - C(14)	1.20(1)
MM2-C(12)	2.09(1)	C(11) - Si(1)	1.902(9)
		C(14)-Si(2)	1.827(10)
	00.24(5)	$C_{1}(2)$ $C(2)$ $O(2)$	177.0(1)
$C_0(2) = MM1 = C_0(3)$	90.34(5)	$C_0(3) - C(7) - O(7)$	1/7.0(1)
$C_0(2) - MMI - C(11)$	54.5(2)	MM1 - C(8) - O(8)	138.7(9)
Co(3) - MMI - CII	52.3(2)	$C_0(3) - C(8) - O(8)$	141.5(9)
$C_0(2) - MM2 - C_0(3)$	89.52(5)	MM1 - C(9) - O(9)	174.3(9)
$C_0(2) = MM2 = C(12)$	51.8(3)	MM1 - C(10) - O10	1/8.8(1)
Co(3) = MM2 = C(12)	53.8(2)	MMI - C(11) - Co(2)	71.8(3)
MM1 - Co(2) - C(11)	53.7(3)	MMI - C(11) - Co(3)	74.0(3)
MM1 - Co(2) - C(12)	76.8(3)	MMI - C(11) - C(12)	106.5(6)
MM2 - Co(2) - C(11)	76.0(2)	$C_0(2) - C(11) - C_0(3)$	115.1(4)
MM2 - Co(2) - C(12)	52.7(3)	$C_0(2) = C(11) = C(12)$	67.9(5)
C(11) - Co(2) - C(12)	39.2(3)	$C_0(3) - C(11) - C(12)$	71.5(5)
MM1 - Co(3) - C(11)	53.7(3)	MM2 - C(12) - Co(2)	75.5(3)
MM1 - Co(3) - C(12)	/5.6(3)	MM2 - C(12) - Co(3)	/2.8(3)
MM2 - Co(3) - C(11)	/8.4(2)	MM2 - C(12) - C(11)	110.3(7)
MM2 - Co(3) - C(12)	53.4(3)	MM2 - C(12) - C(13)	121.0(7)
C(11) - Co(3) - C(12)	39.4(3)	$C_{02} - C(12) - C_{0}(3)$	116.5(4)
MM2 - C(1) - O(1)	1/5.6(9)	$C_0(2) = C(12) = MM2$	/5.5(3)
MM2 - C(2) - O(2)	177.0(1)	$C_0(2) - C(12) - C(11)$	72.9(5)
MM2 - C3 - O(3)	128.7(8)	$C_0(2) = C(12) = C(13)$	118.4(6)
$C_0(3) = C(3) = O(3)$	157.2(9)	$C_0(3) - C(12) - MM2$	72.8(3)
MM2 = C(4) = O(4)	138.3(9)	$C_{0}(3) = C(12) = C(11)$	69.0(5)
$C_0(2) = C(4) = O(4)$	141./(10)	$C_0(3) - C(12) - C(13)$	125.0(6)
$U_0(2) = U(5) = U(5)$	178.5(16)	C(11) - C(12) - C(13)	128.7(9)
MM1 - C(6) - O(6)	128.8(8)	C(12) - C(13) - C(14)	1/4.0(1)
CO(2) = C(6) = O(6)	161.9(10)		

interacting in a σ or π manner with metal centers. This suggests again the presence of two isomers of the cluster $[RuCo_2(CO)_9(\mu_3-\eta^2-HC_2C\equiv CSiMe_3)]$ (12) and not of the expected cluster [RuCo₂(CO)₉(μ_3 - η^2 -Me₃SiC₂C=CSiMe₃)]. By analogy with previous assignments on related clusters, the more deshielded ¹H NMR signal should be assigned to the Co-bound CH proton. The unexpected deprotection of the SiMe₃ group could be due to the presence of fluoride originating from [Cu(NCMe)₄]BF₄. Proto-desilylation occurred at the Co-C-SiMe₃ group rather than at the alkynyl carbon as might have been expected by analogy to [Co₂- $(CO)_4(\mu$ -dppm) $(\mu$ - η^2 -Me₃SiC₂C=CSiMe₃)].³⁰ This was also observed in the case of the deprotection of $[Co_4(\mu-CO)_2]$ - $(CO)_6(\mu$ -dppm) $(\mu_4-\eta^2$ -Me₃SiC₂C=CSiMe₃)] with TBAF/ THF-H₂O which afforded $[Co_4(\mu-CO)_2(CO)_6(\mu-dppm)(\mu_4 \eta^2 - \text{HC}_2 C \equiv CSiMe_3$ instead of the expected [Co₄(μ - $CO_2(CO)_6(\mu$ -dppm)(μ_4 - η^2 -Me₃SiC₂C=CH)].⁴ Cluster **12** was characterized by the usual methods, details of which are given in the Experimental Section. The low yield (22%) and difficulties in crystallizing the product precluded full characterization. However, the IR spectrum is very similar to those of the related clusters 6–8. The ν (C=C) absorption

for the uncoordinated C=C triple bond was not observed whereas it appears at 2108 cm⁻¹ for the cluster [Ru₃(μ -CO)-(CO)₉(μ_3 - η^2 -Me₃SiC₂C=CSiMe₃)].³¹ The FAB mass spectrum shows the presence of the parent ion and the stepwise loss of carbonyl ligands.

Reaction of NEt₄·11 with [NO]BF₄. Cluster NEt₄·11 reacts with [NO]BF4 to afford the new neutral cluster [RuCo3- $(CO)_9(NO)(\mu_4-\eta^2-Me_3SiC_2C \equiv CSiMe_3)$] (13) by selective substitution of a carbonyl ligand on a wing-tip cobalt atom with a nitrosyl group. The identity of 13 was deduced by comparaison with the known cluster $[RuCo_3(CO)_9(NO)(\mu_4 \eta^2$ -PhC=CPh)] synthesized by reaction of [RuCo₃(CO)₁₀(μ_4 - η^2 -PhC=CPh)]⁻ with [NO]BF₄ or by reaction of [RuCo₃-(CO)₁₁(NO)] with diphenylacetylene.³² The nitrosyl group gives rise to an absorption band at 1805 cm⁻¹. The ¹H NMR spectrum contains two different signals for the two -SiMe₃ groups, which suggests the presence of only one isomer, in contrast to the situation in the precursor complex. However, we do not know which isomer was formed. The FAB mass spectrum contains a parent ion and shows stepwise loss of carbonyl groups.

The formation of **13** was accompanied by that of the partially deprotected cluster **12**. Similar decrease in nuclearity affording [RuCo₂(CO)₉(μ_3 - η^2 -PhC=CPh)] occurred during the reaction of [RuCo₃(CO)₁₀(μ_4 - η^2 -PhC=CPh)]⁻ with [NO]-BF₄.³² Deprotection leading to **12** is also due to the presence of fluoride ions originating from [NO]BF₄, and it is surprising that, under similar conditions, the remaining **13** was not deprotected. One of the objectives of the reactions of NEt₄·

11 with $[Cu(NCMe)_4]BF_4$ and $[NO]BF_4$ was the obtention of neutral clusters, which are often more soluble and easier to purify, but unfortunately, the yield was low in both cases.

Reaction of NEt₄·11 with [AuCl(PPh₃)] and PPh₃. With the object of introducing the AuPPh₃ fragment in the cluster and examining its site of attachment, we reacted the cluster NEt₄·11 with [AuCl(PPh₃)] in toluene. Such reactions are generally favored by the addition of TlPF₆, which activates the gold-chlorine bond, but, when this reagent was used, unidentified neutral products were obtained in addition to decomposition (TLC). When NEt₄·11 was heated with

⁽³⁰⁾ Rubin, Y.; Knobler, C. B.; Diederich, F. J. Am. Chem. Soc. 1990, 112, 4966-4968.

⁽³¹⁾ Bruce, M. I.; Low, P. J.; Werth, A.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. **1996**, 1551–1566.

⁽³²⁾ Braunstein, P.; Jiao, F. Y.; Rosé, J.; Granger, P.; Balegroune, F.; Bars, O.; Grandjean, D. J. Chem. Soc., Dalton Trans. 1992, 2543–2550.

Figure 5. View of the molecular structure of the anionic cluster in 14. Only the ipso carbons of the phenyl groups at phosphorus are shown, and the hydrogen atoms have been omitted for clarity.

[AuCl(PPh₃)] in toluene at reflux without addition of TlPF₆, the gold-phosphorus bond was broken and the phosphine liberated substituted selectively a carbonyl ligand on the ruthenium atom to afford [NEt₄][RuCo₃(CO)₉(PPh₃)(μ_4 - η^2 - $Me_3SiC_2C \equiv CSiMe_3)$] (NEt₄·14). This cluster was also obtained directly, and in higher yield, by reaction of NEt₄. 11 with one equivalent of PPh_3 in refluxing toluene. None of these reactions was observed in THF. The cluster has the same color (violet) and an IR spectrum similar to that of the related clusters [RuCo₃(CO)₁₀(μ_4 - η^2 -alkyne)]⁻. As observed in 13, the ¹H NMR spectrum of 14 contains only two different signals for the two -SiMe3 groups, which suggests the presence of only one isomer. It was identified by X-ray diffraction, and the molecular structure of 14 is similar to those of 3, 4, and 11b. A view of the molecule is shown in Figure 5, and selected bond distances and angles are given in Table 5. The nonbonding Co(2)···Co(3) distance is 3.51(1) Å, and the dihedral angle between the butterfly wings is 114° . The carbonyl C(8)O(8) is bridging between Ru and Co(3) whereas C(5)O(5) is semibridging between Ru and Co(2). The Ru-P distance of 2.345(1) is comparable to literature values.³³

Proto-desilylation of 11. Under standard desilylation conditions,³⁴ NEt₄**·11** was treated with a catalytic amount of $[n-Bu_4N]F$ (TBAF) in wet THF. In addition to the deprotection at the alkynyl group, the NEt₄⁺ cation was partially exchanged for N(*n*-Bu)₄⁺. We thus obtained a

Table 5. Selected Bond Distances [Å] and Bond Angles [deg] for 14

 with Estimated Standard Deviations in Parentheses

Ru-Co(1)	2.738(1)	Co(2)-C(3)	1.837(4)
Ru-Co(2)	2.5106(7)	Co(2) - C(4)	1.747(4)
Ru-Co(3)	2.5880(7)	Co(2) - C(5)	1.838(4)
Ru-P	2.345(1)	Co(2) - C(10)	2.081(4)
Ru-C(5)	2.191(4)	Co(2) - C(11)	2.114(4)
Ru-C(8)	2.026(4)	Co(3) - C(6)	1.765(4)
Ru-C(9)	1.872(4)	Co(3) - C(7)	1.753(5)
Ru-C(11)	2.222(4)	Co(3) - C(8)	1.951(4)
Co(1)-Co(2)	2.4407(8)	Co(3)-C(10)	2.113(4)
Co(1)-Co(3)	2.4697(8)	Co(3)-C(11)	2.031(4)
Co(1) - C(1)	1.777(5)	C(10) - C(11)	1.421(5)
Co(1) - C(2)	1.775(4)	C(11) - C(12)	1.434(5)
Co(1) - C(3)	2.055(4)	C(12)-C(13)	1.213(5)
Co(1) - C(10)	2.016(4)	Si(1)-C(10)	1.871(4)
Co(2)···Co(3)	3.51(1)	Si(2)-C(13)	1.835(4)
Co(1) - Ru - C(11)	67.7(1)	Co(1) - C(1) - O(1)	170.8(4)
Co(2)-Ru-Co(1)	55.21(2)	Co(1) - C(2) - O(2)	176.3(4)
Co(2)-Ru-Co(3)	87.05(2)	Co(1) - C(3) - O(3)	133.3(3)
Co(2) - Ru - C(11)	52.6(1)	Co(2) - C(3) - O(3)	149.3(3)
Co(3)-Ru-C(11)	49.2(1)	Co(2) - C(4) - O(4)	177.6(4)
Co(3)-Ru-Co(1)	55.17(2)	Ru - C(5) - O(5)	136.4(3)
Co(2)-Co(1)-C(10)	54.7(1)	Co(2) - C(5) - O(5)	147.0(3)
Co(2) - Co(1) - Co(3)	105.5(2)	Co(3) - C(6) - O(6)	177.3(4)
Co(2)-Co(1)-Ru	57.65(2)	Co(3) - C(7) - O(7)	172.1(5)
Co(3)-Co(1)-Ru	59.32(2)	Ru - C(8) - O(8)	145.1(3)
Co(3) - Co(1) - C(10)	55.1(1)	Co(3) - C(8) - O(8)	133.6(3)
Ru - Co(1) - C(10)	76.2(1)	Ru - C(9) - O(9)	175.0(3)
Co(1) - Co(2) - C(10)	52.2(1)	Co(1) - C(10) - Co(2)	73.1(1)
Co(1) - Co(2) - C(11)	75.4(1)	Co(1) - C(10) - Co(3)	73.4(1)
Ru-Co(2)-C(10)	80.6(1)	Co(1)-C(10)-C(11)	107.6(3)
Ru-Co(2)-C(11)	56.6(1)	Co(2) - C(10) - Co(3)	113.7(2)
Ru-Co(2)-Co(1)	67.14(2)	Co(2) - C(10) - C(11)	71.4(2)
C(10)-Co(2)-C(11)	39.6(2)	Co(3) - C(10) - C(11)	66.9(2)
Ru-Co(3)-Co(1)	65.52(2)	Ru-C(11)-Co(2)	70.7(1)
Ru-Co(3)-C(10)	78.2(1)	Ru-C(11)-Co(3)	74.8(1)
Ru-Co(3)-C(11)	55.9(1)	Ru-C(11)-C(10)	108.2(3)
Co(1)-Co(3)-C(10)	51.8(1)	Co(2)-C(11)-Co(3)	115.8(2)
Co(1)-Co(3)-C(11)	76.1(1)	Co(2) - C(11) - C(10)	69.0(2)
C(10)-Co(3)-C(11)	40.0(2)	Co(3) - C(11) - C(10)	73.1(2)

mixture of the clusters [NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃-SiC₂C=CH)] (NEt₄·15) and [N(*n*-Bu)₄][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C=CH)] [N(n-Bu)₄·15] (Scheme 3). We have succeeded in separating $N(n-Bu)_4$ ·15 from the mixture by recrystallization, and crystals suitable for X-ray diffraction were obtained. The remaining portion of the product was a paste which contained a mixture of the two clusters. The ¹H NMR spectrum of the isolated $N(n-Bu)_4 \cdot 15$ contains, besides the Bu signals, two resonances at δ 0.12 and 0.25 for the nondeprotected -SiMe₃ group corresponding to the two isomers, and obviously two resonances at δ 3.41 and 3.51 for the HC = proton. The disappearance of the signals at δ 0.035 and 0.094 in 11 confirms their assignment to the C≡CSiMe₃ protons. Full deprotection leading to a butadiyne complex was not observed. Whereas proto-desilylation occurred here at the anticipated site, it took place at the cluster core-bound alkyne carbon in the case of the neutral, isoelectronic Co₄ system.⁴

The molecular structure of $N(n-Bu)_4$ **·15a** was established by X-ray diffraction (Figure 6), and selected bond distances

⁽³³⁾ Bouherour, S.; Braunstein, P.; Rosé, J.; Toupet, L. Organometallics 1999, 18, 4908–4915.

^{(34) (}a) Dembinski, R.; Bartik, T.; Bartik, B.; Jaeger, M.; Gladysz, J. A. J. Am. Chem. Soc. 2000, 122, 810-822. (b) Mohr, W.; Peters, T. B.; Bohling, J. C.; Hampel, F.; Arif, A. M.; Gladysz, J. A. C. R. Chim. 2002, 5, 111-118. (c) Dembinski, R.; Lis, T.; Szafert, S.; Mayne, C. L.; Bartik, T.; Gladysz, J. A. J. Organomet. Chem. 1999, 578, 229-246.

Scheme 3

Table 6. Selected Bond Distances [Å] and Bond Angles [deg] for the Anion 15a with Estimated Standard Deviations in Parentheses

			Molec	cule A			
Ru(1)-Co(1)	2.738(1)	Ru(1) - C(12)	2.137(7)	Co(1)-C(11)	2.051(6)	Co(3) - C(7)	1.791(8)
Ru(1)-Co(2)	2.519(1)	Co(1)-Co(2)	2.445(1)	Co(2) - C(4)	1.835(8)	Co(3) - C(8)	1.886(8)
Ru(1) - Co(3)	2.552(1)	Co(1)-Co(3)	2.474(1)	Co(2) - C(5)	1.759(8)	Co(3) - C(11)	2.116(7)
Ru(1) - C(6)	2.199(8)	Co(1) - C(1)	1.808(8)	Co(2) - C(6)	1.818(8)	Co(3) - C(12)	2.059(7)
Ru(1) - C(8)	2.093(8)	Co(1) - C(2)	1.77(1)	Co(2) - C(11)	2.105(8)	C(11) - C(12)	1.43(1)
Ru(1) - C(9)	1.884(8)	Co(1) - C(3)	2.549(9)	Co(2) - C(12)	2.104(7)	C(12) - C(13)	1.44(1)
Ru(1) - C(10)	1.89(1)	Co(1) - C(4)	2.069(7)	Co(3) - C(3)	1.781(8)	C(13)-C(14)	1.17(1)
C(12)-Ru(1)-Co(2)	52.96(2)	C(11)-Co(2)-Co(1)	52.9(2)	O(3)-C(3)-Co(1)	125.9(7)	C(12)-C(11)-Co(2)	70.0(4)
C(12) - Ru(1) - Co(3)	51.2(2)	C(12)-Co(2)-Co(1)	75.6(2)	O(3) - C(3) - Co(3)	167.1(8)	Co(1)-C(11)-Co(2)	72.1(2)
Co(2) - Ru(1) - Co(3)	88.26(3)	C(11)-Co(2)-Ru(1)	79.2(2)	O(4) - C(4) - Co(1)	134.0(6)	C(12)-C(11)-Co(3)	67.8(4)
C(12) - Ru(1) - Co(1)	66.87(2)	C(12)-Co(2)-Ru(1)	54.2(2)	O(4) - C(4) - Co(2)	148.6(7)	Co(1)-C(11)-Co(3)	72.8(2)
Co(2) - Ru(1) - Co(1)	55.24(3)	Co(1) - Co(2) - Ru(1)	66.92(3)	O(5) - C(5) - Co(2)	178.3(7)	Co(2) - C(11) - Co(3)	113.6(3)
Co(3) - Ru(1) - Co(1)	55.65(3)	C(11)-Co(3)-C(12)	39.9(3)	O(6) - C(6) - Co(2)	148.2(6)	C(11)-C(12)-Co(3)	72.0(4)
C(11)-Co(1)-Co(2)	55.0(2)	C(11)-Co(3)-Co(1)	52.4(2)	O(6) - C(6) - Ru(1)	134.6(6)	C(11)-C(12)-Co(2)	70.1(4)
C(11)-Co(1)-Co(3)	54.78(2)	C(12)-Co(3)-Co(1)	75.7(2)	O(7) - C(7) - Co(3)	176.6(7)	Co(3) - C(12) - Co(2)	116.0(3)
Co(2)-Co(1)-Co(3)	91.74(4)	C(11)-Co(3)-Ru(1)	78.2(2)	O(8) - C(8) - Co(3)	141.3(7)	C(11)-C(12)-Ru(1)	110.6(4)
C(11)-Co(1)-Ru(1)	75.0(2)	C(12)-Co(3)-Ru(1)	54.0(2)	O(8) - C(8) - Ru(1)	138.8(7)	Co(3)-C(12)-Ru(1)	74.9(2)
Co(2) - Co(1) - Ru(1)	57.803(3)	Co(1) - Co(3) - Ru(1)	65.99(3)	O(9) - C(9) - Ru(1)	176.3(8)	Co(2) - C(12) - Ru(1)	72.9(2)
Co(3) - Co(1) - Ru(1)	58.37(3)	O(1) - C(1) - Co(1)	174.7(9)	O(10) - C(10) - Ru(1)	178.9(7)	C(12)-C(13)-C(14)	175.0(9)
C(11)-Co(2)-C(12)	39.9(3)	O(2) - C(2) - Co(1)	178.7(8)	C(12)-C(11)-Co(1)	105.6(5)		
			Molec	cule B			
Ru(2)-Co(4)	2.765(1)	Ru(2)-C(29)	2.149(7)	Co(4) - C(28)	2.064(7)	Co(6) - C(23)	1.759(9)
Ru(2)-Co(5)	2.54(1)	Co(4)-Co(5)	2.47(1)	Co(5) - C(20)	1.796(8)	Co(6) - C(24)	1.837(8)
Ru(2)-Co(6)	2.528(1)	Co(4)-Co(6)	2.459(2)	Co(5) - C(21)	1.757(9)	Co(6) - C(28)	2.117(8)
Ru(2) - C(24)	2.146(7)	Co(4) - C(18)	1.79(1)	Co(5) - C(27)	1.858(8)	Co(6) - C(29)	2.080(7)
Ru(2) - C(25)	1.874(9)	Co(4) - C(19)	1.79(1)	Co(5) - C(28)	2.121(7)	C(28) - C(29)	1.41(1)
Ru(2) - C(26)	1.889(8)	Co(4) - C(20)	2.279(9)	Co(5) - C(29)	2.084(7)	C(29) - C(30)	1.45(1)
Ru(2)-C(27)	2.124(9)	Co(4) - C(22)	2.235(9)	Co(6) - C(22)	1.808(8)	C(30) - C(31)	1.20(1)
C(29)-Ru(2)-Co(6)	52.0(2)	C(28)-Co(4)-Co(6)	55.0(2)	O(11)-C(18)-Co(4)	174.6(9)	C(29)-C(28)-Co(4)	105.8(5)
C(29) - Ru(2) - Co(5)	52.0(2)	C(29) - Co(5) - C(28)	39.2(3)	O(12) - C(19) - Co(4)	179.1(8)	Co(4) - C(28) - Co(6)	112.8(3)
Co(6) - Ru(2) - Co(5)	88.33(4)	C(29) - Co(5) - Co(4)	75.4(2)	O(13) - C(20) - Co(4)	129.9(7)	C(29) - C(28) - Co(5)	69.0(4)
C(29) - Ru(2) - Co(4)	68.2(2)	C(28) - Co(5) - Co(4)	52.8(2)	O(15) - C(22) - Co(6)	155.7(7)	Co(4) - C(28) - Co(5)	72.2(2)
Co(6) - Ru(2) - Co(4)	55.13(3)	C(29) - Co(5) - Ru(2)	54.3(2)	O(16) - C(23) - Co(6)	179.7(7)	Co(6) - C(28) - Co(5)	112.8(3)
Co(5)- $Ru(2)$ - $Co(4)$	55.23(3)	C(28) - Co(5) - Ru(2)	78.8(2)	O(17)-C(24)-Co(6)	145.2(6)	C(28) - C(29) - Co(5)	71.8(4)
C(28) - Co(6) - C(29)	39.3(3)	Co(4)-Co(5)-Ru(2)	67.05(4)	O(13) - C(20) - Co(5)	156.7(8)	C(28)-C(29)-Co(6)	71.8(4)
C(28) - Co(4) - Co(5)	54.9(2)	C(28) - Co(6) - Co(4)	53.0(2)	O(14) - C(21) - Co(5)	173.7(8)	Co(5)-C(29)-Co(6)	116.0(3)
Co(6) - Co(4) - Co(5)	91.58(4)	C(29) - Co(6) - Co(4)	75.7(2)	O(17) - C(24) - Ru(2)	136.2(6)	C(28) - C(29) - Ru(2)	111.6(5)
C(28) - Co(4) - Ru(2)	74.4(2)	C(28) - Co(6) - Ru(2)	79.1(2)	O(18) - C(25) - Ru(2)	177.8(7)	Co(5) - C(29) - Ru(2)	73.7(2)
Co(6) - Co(4) - Ru(2)	57.53(3)	C(29) - Co(6) - Ru(2)	54.56(2)	O(19) - C(26) - Ru(2)	177.7(6)	Co(6) - C(29) - Ru(2)	116.0(3)
Co(5) - Co(4) - Ru(2)	57.72(3)	Co(4) - Co(6) - Ru(2)	67.34(4)	O(20) - C(27) - Ru(2)	136.8(6)	C(29)-C(30)-C(31)	174.4(8)

and angles are given in Table 6. The structure is similar to that of **11b**, and two different, almost identical molecules, **A** and **B**, are present in the asymmetric unit. The C(4)O(4) and C(8)O(8) carbonyl ligands in **15aA** are bridging between Co(1), Co(2) and Ru(1), Co(3), respectively. The Co(1)–C(3) and Ru(1)–C(6) distances of 2.549(9) and 2.199(8) Å, respectively, are considerably longer than the Co(3)–C(3)

and Co(2)–C(6) distances of 1.781(8) and 1.818(8) Å, respectively, which suggests that C(3)O(3) and C(6)O(6) occupy a bent semibridging position.²² The remaining carbonyls are terminal. The nonbonding Co(2)···Co(3) and Co(5)···Co(6) distances in the molecules **A** and **B** are both 3.53(1) Å, and the dihedral angles between the butterfly wings are 113.4 and 116.4°, respectively.

Figure 6. View of the molecular structure of the anionic cluster in **15a**. Hydrogen atoms have been omitted for clarity.

To avoid the cation exchange in NEt₄·11 for N(*n*-Bu)₄⁺, we first prepared the cluster [PPN][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃-SiC₂C≡CSiMe₃)] (PPN·11) by cation metathesis since subsequent replacement of PPN⁺ with N(*n*-Bu)₄⁺ should not occur during the desilylation step. As expected, PPN·11 was obtained in two isomeric forms and treatment with TBAF afforded [PPN][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C≡CH)] (PPN· 15) in high yield and also in two isomeric forms (eq 2). This cluster was readily characterized by its spectroscopic properties, which included resonances in the ¹H NMR spectrum for the HC≡ proton at δ 3.23 and 3.44.

NEt₄•11
$$\xrightarrow{\text{[PPN]CI}}$$
 PPN•11 $\xrightarrow{1/4 \text{ TBAF-THF/H}_2\text{O}}$ PPN•15 (2)
THF, THF, room. temp
60 °C, 2 h

Coupling of the Diyne Cluster To Form a Linked "Dicluster" Compound through π -Delocalized Organic Frameworks. As shown in eq 3, the synthesis of the dianion 16 could be achieved through the Pd(II)/Cu(I) catalytic Sonogashira coupling reaction of cluster $[RuCo_3(CO)_{10}(\mu_4 \eta^2$ -Me₃SiC₂C=CH)]⁻ (15) with 1,4-diiodobenzene.³⁵ The benzene ring represents a suitable spacer for a π -conjugated system linking cluster molecules. Since it was difficult to separate NEt₄·15 from N(n-Bu)₄·15, we have used the mixture for the coupling reaction. The reaction was performed in THF/NEt₃ at 50 °C for 18 h, and the color of the solution changed from violet to brown. Extraction with hexane removed a yellow, copper iodide complex (see below), and purification of the remaining product with toluene/pentane afforded 16. The solution IR spectrum of this latter exhibits the characteristic ν (CO) pattern seen for e.g. 15. In the ¹H NMR spectrum we observe the disappearance of the HC \equiv signals present in 15, and negative ion electrospray mass spectrometry (CH₂Cl₂ solution) showed the highest mass molecular weight ions at m/z 717.5 (Z = 2) corresponding to the doubly charged, coupled clusters,

(35) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46-49.

with fragments resulting from loss of CO groups. When PPN-**15** was used, the yellow product could be characterized by X-ray diffraction to be the centrosymmetric dimer [PPN]₂-[Cu₂(μ -I)₂I₂] ([PPN]₂·**17**). These data are not reported here since complexes containing [Cu₂I₄]²⁻ associated with large cations [NR₄]⁺, [PR₄]⁺, or [AsR₄]⁺ (R = alkyl or phenyl) have already been described in the literature.³⁶

Unfortunately, the oxidative coupling of **15**, using standard Eglinton–Glaser conditions³⁷ (Cu(OAc)₂, pyridine, 25 °C), failed.

Formation of Bimetallic Particles by the Sol–Gel Method. As indicated in the Introduction, we considered the use of alkynes containing a $-Si(OR)_3$ group as a way to

 ^{(36) (}a) Su, C.-Y.; Cai, Y.-P.; Chen, C.-L.; Lissner, F.; Kang, B.-S.; Kaim,
 W. Angew. Chem., Int. Ed. 2002, 41, 3371–3375. (b) Pfitzner, A.;
 Schmitz, D. Z. Anorg. Allg. Chem. 1997, 623, 1555–1560 and references cited.

⁽³⁷⁾ Behr, O. M.; Eglinton, G.; Raphael, R. A. J. Chem. Soc. 1960, 3614– 3625.

Scheme 4. Complementary Strategies Based on Functional Alkyne Ligands for the Covalent Grafting of Metal Clusters, Followed by Thermal Treatment to Generate Nanoparticles

covalently anchor metal carbonyl clusters onto surfaces and form new cluster-derived nanomaterials. Two complementary approaches are conceivable: first attach the $-Si(OR)_3$ end of the ligand to the inorganic matrix (Scheme 4, A_1) and then react its alkyne function with the molecular cluster (Scheme 4, A_2), or first prepare the alkyne cluster (Scheme 4, B_1) and react its $-Si(OR)_3$ group with the host matrix to generate the covalent linkage (Scheme 4, B_2).²

In a preliminary study, we have used the newly reported⁵ trialkoxysilyl alkyne HC \equiv C(CH₂)₂OC(O)NH(CH₂)₃Si(OEt)₃ to prepare a xerogel according to Scheme 4, A_1 . It was characterized by ²⁹Si CP-MAS NMR spectroscopy and shown to remain highly porous, 657 m^2/g (determined by nitrogen adsorption isotherms), despite the grafting of the functional alkyne, with a mean pore diameter of 11 nm. Anchoring of $[RuCo_3(CO)_{12}]^-$ was done by reaction of the cluster in THF with the functionalized xerogel. Thermal decomposition was followed in situ in a magnetic thermobalance^{1a} and led to spherical particles of 2.2-5.5 nm in diameter (TEM). X-ray diffraction showed the presence of a hexagonal phase of a RuCo₃ alloy. Magnetic measurements show that these particles display ferromagnetic behavior.³⁸ Further studies are in progress to explore the scope of this sol-gel method applied to mixed-metal clusters for the preparation of bimetallic nanoparticles.

Conclusion

In this work we have described the synthesis and characterization of a series of new alkyne clusters of the type $[RuCo_3(CO)_{10}(\mu_4-\eta^2-RC_2R')]^-$ (1-5) obtained in excellent yields by reaction of the tetrahedral cluster $[RuCo_3(CO)_{12}]^$ with MeOC(O)C=CC(O)OMe, PhC=CH, HC=C(Me)-C=CH₂, HC=CCH₂OCH₂C=CH, and the new alkyne HC=CCH₂NHC(O)C=CPh, respectively. All the alkynes were linked to the cluster in a $\mu_4-\eta^2$ fashion. Reactions of the anionic clusters 1-3 with [Cu(NCMe)_4]BF_4 led to their

selective fragmentation to the trinuclear neutral clusters 6-8. The coordinated alkynes in clusters 1, 3-5, and 8 offer the potential of further derivatization. The functionalization of clusters [RuCo₃(CO)₁₂]⁻ and [FeCo₃(CO)₁₂]⁻ was also performed directly by reaction with PhC=CC(O)NH(CH₂)₃- $Si(OMe)_3$ (L²), which is of interest for future condensation with a silica matrix via the sol-gel method. Indeed, preliminary results indicate the potential of porous gels, obtained from $HC \equiv C(CH_2)_2 OC(O) NH(CH_2)_3 Si(OEt)_3$, for tethering alkyne mixed-metal clusters which can be used as precursors to bimetallic particles. Reaction of 1,4-bis(trimethylsilyl)butadiyne with $[RuCo_3(CO)_{12}]^-$ afforded the air-stable cluster 11 whose reaction with $[Cu(NCMe)_4]BF_4$ led, in addition to fragmentation, to the unexpected proto-desilylation of the core-bound SiMe₃ group due to the presence of fluoride ions. The thermal reaction of **11** with [AuCl(PPh₃)] or PPh₃ led to selective substitution of a carbonyl ligand on the ruthenium atom by triphenylphosphine. Although CO ligands on cobalt are more labile than on ruthenium, the latter center is more electron-deficient and will form stronger bonds with the phosphine. Proto-desilylation of 11 using TBAF/THF-H₂O occurred at the expected site to yield [RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C≡CH)][−]. A Sonogashira coupling reaction between cluster [RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C=CH)]⁻ (15) and 1,4diiodobenzene afforded an isomeric mixture of the diclusters $[{RuCo_3(CO)_{10}(\mu_4-\eta^2-Me_3SiC_2C=C)}_2C_6H_4]^{2-}$ (16), the properties of which will be the subject of future work.

Experimental Section

All the reactions and manipulations were carried out under an inert atmosphere of purified nitrogen using standard Schlenk tube techniques. Solvents were dried and distilled under nitrogen before use: toluene over sodium, tetrahydrofuran, hexane and pentane over sodium-benzophenone, dichloromethane over phosphorus pentoxide. Nitrogen (Air liquide, R-grade) was passed through BASF R3-11 catalyst and molecular sieve columns to remove residual oxygen and water. The ligand PhC=CC(O)NH(CH₂)₃Si(OMe)₃⁴ and the clusters $[NEt_4][RuCo_3(CO)_{12}]^{24c}$ and $[NEt_4][FeCo_3(CO)_{12}]^{39}$ were prepared according to literature methods. Elemental C, H, and N analyses were performed by the Service de microanalyses du CNRS (ULP Strasbourg). Infrared spectra (cm⁻¹) were recorded on a IFS-66 FTIR Bruker or a Perkin-Elmer 1600 series FTIR spectrometer. The ¹H NMR spectra were recorded at 200.13, 300.13, 400.13, or 500.13 MHz on a Bruker AC200, AC300, AVANCE 300, AVANCE 400, or AVANCE 500 instrument.

Synthesis of the ligand PhC=CC(O)NHCH₂C=CH (L¹). A solution of propargylamine (0.783 mL, 11.42 mmol) in 20 mL of toluene was added dropwise to a toluene solution of 3-phenylpropynoyl chloride, obtained by reaction of phenylpropynoic acid (0.459 g, 3.425 mmol) with thionyl chloride (0.300 mL, 4.110 mmol). After the addition was complete, the mixture was stirred at room temperature for 1 h and then poored into 60 mL of cold water. The mixture was filtered, and the solid was discarded. The layers were separated, and the organic fraction was dried over MgSO₄ and then evaporated to afford L¹ (0.496 g, 2.710 mmol, 79% (based on 3-phenylpropiolic acid)) as a yellow solid. IR (CHCl₃): 3439 (m, ν_{NH}), 3307 (s, $\nu_{\equiv CH}$), 2223 (vs, $\nu_{\equiv C}$), 1654 (vs, $\nu_{C=O}$), 1506 (vs, δ_{NH}). ¹H NMR (300.13 MHz, CDCl₃): δ 2.28 (t, ⁴*J*(HH) =

⁽³⁸⁾ Choualeb, A. Ph.D. Thesis, Université Louis Pasteur, Strasbourg, France, September 2003.

⁽³⁹⁾ Chini, P.; Colli, L.; Peraldo, M, Gazz. Chim. Ital. 1960, 90, 1005-1020.

Choualeb et al.

2.6 Hz, 1H, HC≡), 4.15 (dd, ${}^{3}J$ (HH) = 5.4 Hz, ${}^{4}J$ (HH) = 2.6 Hz, 2 H, CH₂N), 6.22 (br, NH), 7.25–7.53 (m, 5H, Ph). ${}^{13}C{}^{1H}$ NMR (100.62 MHz, CDCl₃) δ : 29.62 (s, NCH₂), 72.27 (s, HC≡C), 78.61 (s, HC≡C), 82.42 (s, PhC≡C), 85.74 (s, PhC≡C), 120.0, 127.1, 128.3, 128.6, 130.3 (5 s, C₆H₅), 132.6 (s, C_{ipso} of C₆H₅), 153.0 (s, C=O). Anal. Calcd for C₁₂H₉NO: C, 78.67; H, 4.95; N, 7.65. Found: C, 78.82; H, 5.12; N, 7.78.

Synthesis of [NEt₄][RuCo₃(CO)₁₀{ μ_4 - η^2 -MeOC(O)C₂C(O)-OMe}] (NEt₄·1). To a solution of [NEt₄][RuCo₃(CO)₁₂] (0.550 g, 0.739 mmol) in 50 mL of THF was added dimethylacetylene dicarboxylate (dmad) (0.460 mL, 3.736 mmol). The mixture was heated to reflux, and the progress of the reaction was monitored by IR spectroscopy. After ca. 7 h the reaction was complete. Recrystallization of the residue from CH₂Cl₂/hexane yielded violet crystals of NEt₄·1 (0.450 g, 0.542 mmol, 73%). IR (CH₂Cl₂): 2059 (m), 2015 (vs), 1988 (s, sh), 1833 (m), $\nu_{C=0}$, 1712 (m, $\nu_{C=0}$). ¹H NMR (200.13 MHz, CDCl₃): δ 1.28 (m, 12 H, CH₂CH₃), 3.20 (m, 8 H, CH₂), 3.50 (s, 3 H, OCH₃), 3.57 (s, 3 H, OCH₃). Anal. Calcd for C₂₄H₂₆Co₃NO₁₄Ru: C, 34.72; H, 3.16; N, 1.69. Found: C, 34.84; H, 3.23; N, 1.76.

Synthesis of [NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -HC₂Ph)] (NEt₄·2). Similary to the synthesis of NEt₄·1, the reaction of [NEt₄][RuCo₃-(CO)₁₂] (0.740 g, 0.994 mmol) in 50 mL of THF with phenylacetylene (0.556 mL, 5.064 mmol) was monitored by IR, which indicated the completion of the reaction after ca. 7 h. After filtration, the solvent was removed under vacuum. The residue was washed with hexane and recrystallized from CH₂Cl₂/hexane to yield violet crystals of NEt₄·2 (0.576 g, 0.729 mmol, 73%). IR (CH₂Cl₂, ν_{CO}): 2049 (m), 2005 (vs), 1975 (sh), 1820 (m). ¹H NMR (200.13 MHz, CDCl₃): δ 1.27 (m, 12 H, CH₃), 3.11 (m, 8 H, CH₂), 6.80–7.26 (m, 5 H, Ph), 8.36 (br s, 0.25 H, HC₂ of one isomer), 8.84 (br s, 0.75 H, HC₂ of the other isomer). Anal. Calcd for C₂₆H₂₆Co₃NO₁₀-Ru: C, 39.51; H, 3.32; N, 1.77. Found: C, 39.67; H, 3.25; N, 1.61.

Synthesis of [NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -HC₂(Me)C=CH₂] (NEt₄·3). By a procedure similar to that detailed for NEt₄·1, the reaction of [NEt₄][RuCo₃(CO)₁₂] (0.670 g, 0.900 mmol) in 50 mL of THF with 2-methyl-1-buten-3-yne (0.407 mL, 4.277 mmol) at reflux for 5 h afforded, after workup, cluster NEt₄·3 (0.539 g, 0.715 mmol, 80%) as violet crystals, which were further washed with hexane. IR (CH₂Cl₂, v_{CO}): 2048 (m), 2003 (vs), 1973 (s), 1817 (m). The two isomers were separated manually under the microscope and their NMR spectra recorded. Isomer NEt₄·3a gives rise to large, parallelepipedic crystals whereas NEt₄·3b crystallized as thin plates. ¹H NMR for NEt₄·3a (300.13 MHz, CDCl₃): δ 1.37 (m, 12H, CH₂CH₃), 1.75 (m, 3H, CH^AH^B=C(CH₃), X₃ part of an ABX₃ spin system), 3.24 (m, 8H, CH₂CH₃), 4.40 (m, 1H, CH^AH^B= C(CH₃), A part of an ABX₃ spin system), 4.54 (m, 1H, CH^A H^B = C(CH₃), B part of an ABX₃ spin system), 8.72 (br s, 1H, HC₂). ¹H NMR for NEt₄·3b (300.13 MHz, CDCl₃): δ 1.37 (m, 12H, CH_2CH_3), 1.82 (m, 3H, $CH^AH^B = C(CH_3)$, X₃ part of an ABX₃ spin system), 3.25 (m, 8H, CH_2CH_3), 4.55 (m, 1H, $CH^AH^B = C(CH_3)$, A part of an ABX₃ spin system), 4.92 (m, 1H, CH^AH^B=C(CH₃), B part of an ABX₃ spin system), 8.17 (br s, 1 H, HC₂). Anal. Calcd for C23H26C03NO10Ru: C, 36.62; H, 3.47; N, 1.86. Found: C, 36.45; H, 3.29; N, 1.75.

Synthesis of [NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -HC₂CH₂OCH₂-C=CH)] (NEt₄·4a). A solution of [NEt₄][RuCo₃(CO)₁₂] (0.275 g, 0.369 mmol) and propargyl ether (0.042 mL, 0.408 mmol) was refluxed in 50 mL of THF for 5 h. The solution was filtered and evaporated under vacuum. Violet crystals of NEt₄·4a (0.266 g, 0.340 mmol, 92%) were obtained by recrystallization of the product from CH₂Cl₂/hexane. IR (CH₂Cl₂, ν_{CO}): 2049 (m), 2003 (vs), 1970 (s), 1819 (m). ¹H NMR (300.13 MHz, CDCl₃): δ 1.38 (m, 12 H, CH₂CH₃), 2.30 (br s, 1 H, ≡CH), 3.60 (m, 8 H, CH₂CH₃), 3.93 (s, 2 H, OCH₂), 4.09 (s, 2 H, OCH₂), 8.76 (br s, 1 H, HC₂). Anal. Calcd for C₂₄H₂₆Co₃NO₁₁Ru: C, 36.85; H, 3.35; N, 1.79. Found: C, 36.98; H, 3.41; N, 1.83.

Synthesis of [NEt₄][RuCo₃(CO)₁₀(\mu_4-\eta^2-HC₂C(O)NHCH₂-C≡CPh] (NEt₄·5). By a procedure similar to that described for NEt₄·1, the cluster NEt₄·5 (0.278 g, 0.320 mmol, 95%) was obtained by reaction of [NEt₄][RuCo₃(CO)₁₂] (0.250 g, 0.336 mmol) with PhC≡CC(O)NHCH₂C≡CH (L¹) (0.062 g, 0.339 mmol) in 50 mL refluxing THF for 5 h, and recrystallization from CH₂Cl₂/hexane. IR (CH₂Cl₂): 2051 (m), 2007 (vs), 1972 (s), 1820 (m) \nu_{C=0}, 1646 (w, \nu_{C=0}). ¹H NMR (300.13 MHz, CDCl₃): \delta 1.36 (m, 12H, CH₂CH₃), 3.25 (m, 8H, CH₂CH₃), 3.95 (m, 2H, HNCH₂), 5.65 (br, NH), 7.26−7.53 (m, 5H, Ph), 8.70 (br s, 1H, HC₂). Anal. Calcd. for C₃₀H₂₉Co₃N₂O₁₁Ru: C, 41.35; H, 3.35; N, 3.21. Found: C, 41.48; H, 3.17; N, 3.08.

Synthesis of [RuCo₂(CO)₉(μ_3 - η^2 -MeOC(O)C₂C(O)OMe] (6). Solid [Cu(NCMe)₄]BF₄ (0.227 g, 0.724 mmol) was added to a solution of NEt₄·1 (0.300 g, 0.361 mmol) in 50 mL THF. After the mixture was stirred for 2.5 h at room temperature, a second equivalent of [Cu(NCMe)₄]BF₄ was added. The reaction occurs with a change of color from violet to red, and it was stopped after ca. 5 h. The reaction mixture was then filtered and the solvent was evaporated under vacuum. Extraction of the residue with hexane afforded the neutral cluster **6** (0.119 g, 0.195 mmol, 54%). IR (hexane): 2108 (m), 2075 (vs), 2058 (sh), 2042 (vs), 2016 (sh), 1911 (w), $\nu_{C=0}$, 1721 (m, $\nu_{C=0}$). ¹H NMR (300.13 MHz, CDCl₃): δ 3.78 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃). Anal. Calcd for C₁₅H₆-Co₂O₁₃Ru: C, 29.38; H, 0.99. Found: C, 29.59; H, 1.15.

Synthesis of [RuCo₂(CO)₉(\mu_3-\eta^2-HC₂Ph)] (7). Cluster 7 (0.047 g, 0.082 mmol, 34%) was obtained as red crystals by a procedure and workup similar to those for 6 by addition of [Cu(NCMe)₄]BF₄ (0.074 g, 0.237 mmol) to a solution of NEt₄·**2** (0.187 g, 0.237 mmol) in 30 mL THF. IR (hexane, ν_{CO}): 2098 (s), 2062 (vs), 2047 (vs), 2036 (vs), 2012 (s), 1900 (m, br). ¹H NMR (300.13 MHz, CDCl₃): δ 7.10–7.45 (m, 5H, Ph), 7.97 (br s, 0.5 H, CH of one isomer), 9.59 (br s, 0.5 H, CH of the other isomer). Anal. Calcd for C₁₇H₆-Co₂O₉Ru: C, 35.62; H, 1.06. Found: C, 35.84; H, 1.19.

Synthesis of $[RuCo_2(CO)_9(\mu_3-\eta^2-HC_2(Me)C=CH_2)]$ (8). By a procedure similar to that leading to 6 or 7, cluster 8 (0.099 g, 0.186 mmol, 38%) was obtained by reaction of NEt₄•3 (0.364 g, 0.483 mmol) in 35 mL of THF with [Cu(NCMe)₄]BF₄ (0.304 g, 0.966 mmol). IR (hexane, v_{CO}): 2098 (m), 2061 (vs), 2046 (vs), 2034 (vs), 2022 (s), 2010 (s), 1902 (br,w). ¹H NMR (300.13 MHz, CDCl₃): δ 1.98 (m, 1.5H, CH^AH^B=C(CH₃), X₃ part of an ABX₃ spin system of the first isomer), 2.19 (m, 1.5H, $CH^{A}H^{B}=C(CH_{3})$, X₃ part of an ABX₃ spin system of the second isomer), 4.78 (m, 0.5H, $CH^{A}H^{B}=C(CH_{3})$, A part of an ABX₃ spin system of the first isomer), 4.81 (m, 0.5H, CH^AH^B=C(CH₃), B part of an ABX₃ spin system of the first isomer), 4.84 (m, 0.5H, CHAHB=C(CH₃), A part of an ABX₃ spin system of the second isomer), 4.98 (m, 0.5H, $CH^{A}H^{B}=C(CH_{3})$, B part of an ABX₃ spin system of the second isomer), 7.83 (br s, 0.5H, HC_2 of the second isomer), 9.36 (br s, 0.5H, HC₂ of the first isomer). Anal. Calcd for C₁₄H₆Co₂O₉Ru: C, 31.31; H, 1.13. Found: C, 31.46; H, 1.25.

Synthesis of [NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -PhC₂C(O)NH(CH₂)₃Si-(OMe)₃] (NEt₄·9). A slight excess of PhC=CC(O)NH(CH₂)₃Si-(OMe)₃ (L²) (0.122 g, 0.397 mmol) was reacted with [NEt₄][RuCo₃-(CO)₁₂] (0.212 g, 0.284 mmol) in 50 mL refluxing THF for 6 h. Treatment of the solution by the procedures detailed above for related clusters and purification by repeated reprecipitations of the product from CH₂Cl₂/pentane and then CH₂Cl₂/hexane afforded

NEt₄•**9** (0.240 g, 0.241 mmol, 85%) as a violet powder. IR (CH₂-Cl₂): 2052 (m), 2011 (vs), 1976 (s), 1826 (m), $\nu_{C=0}$, 1650 (m, $\nu_{C=0}$). ¹H NMR (300.13 MHz, CD₂Cl₂): δ 0.34 (m, 1H, SiCH₂ of one isomer), 0.49 (m, 1H, SiCH₂ of the other isomer), 1.19 (m, 13H, CH₂CH₂CH₂ of one isomer and NCH₂CH₃), 1.45 (m, 1H, CH₂CH₂CH₂ of the other isomer), 2.86 (m, 1H, NCH₂, of one isomer), 3.10 (m, 9H, NCH₂ of the other isomer and NCH₂CH₃), 3.47 (s, 4.5H, Si(OMe)₃ of one isomer), 3.50 (s, 4.5H, Si(OMe)₃ of the other isomer), 5.30 (br, NH of one isomer), 5.85 (br, NH of the other isomer), 7.03−7.11 (m, 5H, Ph). Anal. Calcd for C₃₃H₄₁-Co₃N₂O₁₄RuSi•¹/₃C₆H₁₄: C, 41.05; H, 4.49; N, 2.73. Found: C, 40.83; H, 3.91; N, 2.91.

Synthesis of [NEt₄][FeCo₃(CO)₁₀(μ_4 - η^2 -PhC₂C(O)NH(CH₂)₃Si- $(OMe)_3$ (NEt₄·10). A 4-fold excess of PhC=CC(O)NH(CH₂)₃Si- $(OMe)_3$ (L²) (0.443 g, 1.44 mmol) was reacted with [NEt₄][FeCo₃-(CO)₁₂] (0.250 g, 0.357 mmol) in 50 mL refluxing THF for 4 h. The intense violet-black product was isolated by a procedure similar to that for NEt_4 ·2. Purification by repeated reprecipitation from CH₂Cl₂/pentane and then CH₂Cl₂/hexane at -20 °C afforded NEt₄. **10** (0.280 g, 0.295 mmol, 83%). IR (CH₂Cl₂): 2051 (m), 2003 (vs), 1996 (sh), 1932 (m,sh), 1813 (m,br), $\nu_{C=0}$, 1650 (m, $\nu_{C=0}$). ¹H NMR (400.13 MHz, CDCl₃): δ 0.40 (m, 1H, SiCH₂ of one isomer), 0.50 (m, 1H, SiCH₂ of the other isomer), 1.13 (t, ${}^{3}J(HH) = 7.1$ Hz, 12H, CH₂CH₃), 1.30 (m, 2H, CH₂CH₂CH₂), 2.97 (m, 1H, NCH₂ of one isomer), 3.11 (m, 1H, NCH₂ of the other isomer), 3.44 (q, ${}^{3}J(\text{HH}) = 7.1 \text{ Hz}, 8\text{H}, CH_2CH_3), 3.48 (s, 4.5\text{H}, Si(OMe)_3 of one)$ isomer), 3.50 (s, 4.5H, Si(OMe)₃) of the other isomer), 5.64 (br, NH of one isomer), 6.20 (br, NH of the other isomer), 6.74-7.85(m, 5H, Ph). Anal. Calcd for $C_{33}H_{41}Co_3FeN_2O_{14}Si^{-1}/_2C_6H_{14}$: C, 43.52; H, 4.87; N, 2.82. Found: C, 43.27; H, 4.39; N, 3.36.

Synthesis of [NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C=CSiMe₃)] (NEt₄·11). To a solution of [NEt₄][RuCo₃(CO)₁₂] (0.206 g, 0.276 mmol) in 30 mL THF was added 1,4-bis(trimethylsilyl)butadiyne (0.059 g, 0.303 mmol). After refluxing for 7 h, the solution was evaporated under reduced pressure, and the resulting solid was washed with hexane to remove excess alkyne. The resulting solid was extracted with CH₂Cl₂, the solution was filtered and concentrated, and addition of hexane afforded violet, air-stable crystals of NEt₄·11 (0.166 g, 0.188 mmol, 68%). IR (CH₂Cl₂, v_{CO}): 2047 (m), 2004 (vs), 1973 (s), 1820 (m). ¹H NMR (500.13 MHz, CDCl₃): δ 0.035 (s, 5.4H, =CSiMe₃ of the first isomer), 0.094 (s, 3.6H, \equiv CSiMe₃ of the second isomer), 0.108 (s, 3.6H, C₂SiMe₃ of second isomer), 0.24 (s, 5.4H, C₂SiMe₃ of the first isomer), 1.39 (m, 12H, CH₂CH₃), 3.27 (m, 8H, CH₂CH₃). Anal. Calcd for C₂₈H₃₈-Co₃NO₁₀RuSi₂: C, 38.10; H, 4.34; N, 1.59. Found: C, 37.81; H, 4.39; N, 1.57.

Synthesis of [RuCo₂(CO)₉(μ_3 - η^2 -HC₂C≡CSiMe₃)] (12). The red cluster 12 (0.017 g, 0.029 mmol, 22%) was obtained similarly to **6**-**8** by reaction of NEt₄·**11** (0.118 g, 0.134 mmol) with [Cu(NCMe)₄]BF₄ (0.084 g, 0.268 mmol) in 25 mL of THF at room temperature. Surprisingly, partial desilylation of the ligand occurred (see text). IR (hexane, ν_{CO}): 2100 (m), 2066 (vs), 2055 (vs), 2037 (vs), 2011 (m,w), 1903 (w). ¹H NMR (300.13 MHz, CDCl₃): δ 0.15 (s, 4.5H, SiMe₃ of one isomer), 0.19 (s, 4.5H, SiMe₃ of the other isomer). 8.02 (br s, 0.5H, HC₂ of one isomer), 9.48 (br s, 0.5H, HC₂ of the other isomer). FAB⁺/MS: m/z 594 (M⁺), 566 (M - CO)⁺, 538 (M⁺ - 2CO)⁺, 510 (M - 3CO)⁺, 482 (M - 4CO)⁺, 454 (M - 5CO)⁺, 426 (M - 6CO)⁺, 398 (M - 7CO)⁺. Satisfactory elemental analyses could not be obtained.

Synthesis of $[RuCo_3(CO)_9(NO)(\mu_4-\eta^2-Me_3SiC_2C\equiv CSiMe_3)]$ (13). Solid [NO]BF₄ (0.057 g, 0.490 mmol) was added to a suspension of NEt₄·11 (0.226 g, 0.256 mmol) in 25 mL CH₂Cl₂. After the mixture was stirred for 40 min at room temperature, the reaction was stopped and the solution was filtered and concentrated under reduced pressure. Separation by preparative TLC (SiO₂) using hexane as eluent afforded two bands. The first red band contains **12** (0.016 g, 0.028 mmol, 11%) described above, and the brown band contains **13** (0.040 g, 0.053 mmol, 21%) with the following data. IR (hexane): 2084 (m), 2055 (vs), 2045 (s), 2037 (s), 2022 (m), 2005 (m), 1915 (s), 1888 (m), 1874 (m), $\nu_{C=0}$, 1805 (m, ν_{NO}). ¹H NMR (300.13 MHz, CDCl₃): δ 0.09 (s, 9H, SiMe₃), 0.35 (s, 9H, SiMe₃). FAB⁺/MS: m/z 755 (M⁺), 727 (M – CO)⁺, 699 (M – 2CO)⁺, 671 (M – 3CO)⁺, 643 (M – 4CO)⁺, 615 (M – 5CO)⁺, 587 (M – 6CO)⁺, 531 (M – 8CO)⁺, 503 (M – 9CO)⁺. Satisfactory elemental analyses could not be obtained.

Synthesis of [NEt₄][RuCo₃(CO)₉(PPh₃)(μ_4 - η^2 -Me₃SiC₂C \equiv CSiMe₃)] (NEt₄·14). Cluster NEt₄·11 (0.161 g, 0.182 mmol) and [AuCl(PPh₃)] (0.090 g, 0.182 mmol) were refluxed in 40 mL of toluene for 3 h. The dark-brown solution was filtered and evaporated, and the solid was recrystallized from CH₂Cl₂/pentane to yield violet crystals of NEt₄·14 (0.081 g, 0.073 mmol, 41%). This product was also obtained, in a better yield (55%), by reaction of NEt₄·11 with one equivalent of PPh₃ in refluxing toluene. IR (CH₂Cl₂, ν_{CO}): 2060 (w), 2021 (s), 1969 (vs), 1948 (sh), 1798 (m). ¹H NMR (300.13 MHz, acetone-*d*₆): δ -0.47 (s, 9H, \equiv CSiMe₃), 0.35 (s, 9H, -C₂SiMe₃), 1.33 (m, 12H, CH₂CH₃), 3.43 (m, 8H, CH₂CH₃), 7.57-7.95 (m, 15H, Ph). ³¹P{¹H} NMR (acetone-*d*₆) δ : 44.0 (s, w_{1/2} = 50 Hz). Anal. Calcd for C₄₅H₅₃Co₃NO₉PRuSi₂: C, 48.39; H, 4.78; N, 1.25. Found: C, 48.58; H, 4.96; N, 1.39.

Proto-desilylation of [NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C= CSiMe₃)] (NEt₄·11). To a solution of NEt₄·11 (0.274 g, 0.311 mmol) in 10 mL of THF was added dropwise N(n-Bu)₄F (1.0 M in THF/5 wt % H₂O; 0.077 mL, 0.077 mmol) with stirring. After 45 min, the solvent was evaporated to dryness, the product was extracted from CH₂Cl₂, and the solution was filtered and concentrated; addition of hexane afforded after 10 days violet crystals of $[N(n-Bu)_4)][RuCo_3(CO)_{10}(\mu_4-\eta^2-Me_3SiC_2C=CH)]([N(n-Bu)_4]-15)$ (0.051 g, 0.055 mmol, 18%) and a paste containing a mixture of [NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C=CH)] (NEt₄·15) and N(n- $Bu_4 \cdot 15$ (0.179 g). Data for N(*n*-Bu)₄ \cdot 15 are as follows. IR (CDCl₃, $\nu_{\rm CO}$): 2048 (m), 2005 (vs), 1972 (s), 1818 (m). ¹H NMR (300.13) MHz, CDCl₃): δ 0.12 (s, 3H, C₂SiMe₃ of the first isomer), 0.25 (s, 6H, C₂SiMe₃ of the second isomer), 1.04 (m, 12H, CH₂CH₃), 1.42 (m, 8H, CH₂CH₃), 1.59 (m, 8H, CH₂CH₂CH₂), 3.25 (m, 8H, NCH₂), 3.41 (s, 0.66H, C-H of the second isomer), 3.51 (s, 0.34H, C-H of the first isomer).

Synthesis and Proto-desilylation of [PPN][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C=CSiMe₃)] (PPN·11). A solution of NEt₄·11 (0.218 g, 0.247 mmol) and solid PPNCl (0.156 g, 0.272 mmol) in 20 mL of THF was heated at 60 °C for 2 h. The solution was cooled to -20 °C and then filtered, and the solvent was evaporated. Purification from toluene/pentane afforded violet PPN·11 (0.303 g, 0.234 mmol, 95%), characterized by its ¹H NMR spectrum. ¹H NMR (300.13 MHz, CDCl₃): δ 0.012 (s, 5.4H, =CSiMe₃ of the first isomer), 0.097 (s, 3.6H, =CSiMe₃ of the second isomer), 0.23 (s, 5.4H, C₂SiMe₃ of the first isomer), 7.17–7.82 (m, 30H, Ph).

To a Schlenk flask containing PPN•**11** (0.210 g, 0.162 mmol) and THF (14 mL) was added dropwise with stirring N(*n*-Bu)₄F (1.0 M in THF/5 wt % H₂O; 0.032 mL, 0.032 mmol). After 45 min, the solvent was evaporated to dryness, the product was extracted with toluene, and the solution was filtered. Recrystallization from toluene/pentane gave violet [PPN][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C=CH] (PPN•**15**) (0.169 g, 0.139 mmol, 86%). IR (CH₂Cl₂, ν_{CO}): 2047 (m), 2005 (vs), 1973 (s), 1821 (m). ¹H NMR (300.13 MHz, CDCl₃): δ 0.11 (s, 3.6H, -C₂SiMe₃ of the first

Table 7. Summary of Crystallographic Data for Complexes NEt₄·3a, NEt₄·4a, 6, NEt₄·11b, NEt₄·14, and N(*n*-Bu₄)·15a

	NEt ₄ •3a	NEt ₄ •4a	6	NEt ₄ •11b	NEt ₄ •14	N(<i>n</i> -Bu ₄)•15a
empirical formula	C23H26C03-	C24H26C03-	C15H6Co2-	C28H38Co3-	C45H53C03-	C33H46C03-
	NO ₁₀ Ru	NO ₁₁ Ru	O ₁₃ Ru	NO10RuSi2	NO9PRuSi2	NO10RuSi
MW	754.31	782.32	613.13	882.63	1116.89	922.66
color	violet	violet	red	violet	violet	violet
cryst system	monoclinic	monoclinic	triclinic	orthorhombic	orthorhombic	triclinic
space group	$P2_1$	$P2_{1}/c$	$P\overline{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P\overline{1}$
a (Å)	12.037(4)	9.766(5)	8.809(1)	9.886(5)	12.531(2)	10.534(1)
b (Å)	18.318(5)	11.686(5)	8.958(1)	11.468(5)	13.382(2)	14.500(1)
<i>c</i> (Å)	13.362(4)	25.695(5)	13.857(1)	32.221(5)	29.276(3)	26.686(1)
α (deg)	90.00	90.00	93.529(5)	90.00	90.00	87.389(5)
β (deg)	100.958(8)	95.038(5)	106.739(5)	90.00	90.00	87.001(5)
γ (deg)	90.00	90.00	101.978(5)	90.00	90.00	86.167(5)
$V(Å^3)$	2892.6(15)	2921(2)	1015.72(18)	3653(3)	4909.4(12)	4057.8(5)
Ζ	4	4	2	4	4	4
$D_{\text{calc}} (\text{g} \cdot \text{cm}^{-3})$	1.732	1.779	2.005	1.605	1.511	1.510
wavelength (Å)	0.71069	0.71069	0.71069	0.71069	0.71069	0.71069
$\mu (\text{mm}^{-1})$	2.253	2.237	2.414	1.859	1.431	1.649
temp (K)	173(2)	173(2)	173(2)	173(2)	173(2)	293(2)
hkl limiting indices	-15/15	-14/14	-12/10	0/13	0/16	-12/13
	-21/23	0/17	-12/12	0/16	0/17	-18/17
	-17/17	0/38	-18/19	-45/45	-37/37	-34/34
F(000)	1504	1560	596	1784	2280	1880
θ limits (deg)	2.71 - 27.46	0.99 - 32.02	2.97-30.12	2.4-30.0	2.33-27.47	2.29 - 27.46
no. of data meas	12018	10119	5580	10356	10871	17153
no. of data $(I > 2\sigma(I))$	6888	6256	3595	6183	8984	9646
R	0.0543	0.0333	0.1232	0.0834	0.0368	0.0815
$R_{\rm w}$	0.1279	0.0697	0.1083	0.1551	0.0770	0.1499
GOF	0.965	0.714	1.12	1.09	0.860	1.030
largest peak in final difference ($e \cdot Å^{-3}$)	1.066	0.46	1.32	0.71	0.453	1.016

isomer), 0.24 (s, 5.4 H, $-C_2SiMe_3$ of the second isomer), 3.23 (s, 0.4H, C-H of the second isomer), 3.44 (s, 0.6H, C-H of the first isomer), 7.16–7.87 (m, 30H, Ph). Anal. Calcd for $C_{53}H_{40}Co_3$ -NO₁₀P₂RuSi: C, 52.23; H, 3.31; N, 1.15. Found: C, 52.48; H, 3.48; N, 1.39.

Coupling Reaction of [NEt₄/N(n-Bu)₄]·15 with C₆H₄I₂. To the mixture of $[NEt_4]$ ·15 and $[N(n-Bu)_4]$ ·15 (0.065 g), obtained by desilylation of [NEt₄]·11 (see above), dissolved in THF/dry triethylamine 2/10 mL, was added a mixture of catalytic amounts of [PdCl₂(PPh₃)₂] and CuI. After stirring for 5 min, pure 1,4diiodobenzene (0.012 g, 0.035 mmol) was added, the mixture was heated at 50 °C for 18 h, and the color of the solution changed from violet to brown. The solution was filtered and evaporated to dryness under vacuum, and extraction of the solid with hexane afforded yellow [NEt₄/(n-Bu)₄N]₂[Cu₂(µ-I)₂I₂] (0.01 g). Purification of the remaining solid from CH2Cl2/hexane at -20 °C afforded the coupled product $[NEt_4/N(n-Bu)_4]_2[\{RuCo_3(CO)_{10}(\mu_4-\eta^2-Me_3-\mu_3-\mu_4)\}_2]$ $SiC_2C = C - \frac{1}{2}C_6H_4$ ([NEt₄/N(*n*-Bu)₄]₂·16) (0.052 g). IR (CH₂Cl₂, $\nu_{\rm CO}$): 2047 (m), 2004 (vs), 1972 (s), 1820 (m). ES/MS m/z of the dianion 16²⁻: 717.5 (M)²⁻, 703.5 (M - CO)²⁻, 689.5 (M - $2CO)^{2-}$, 675.5 (M - $3CO)^{2-}$, 661.5 (M - $4CO)^{2-}$, 647.5 (M -5CO)²⁻, 633.5 (M - 6CO)²⁻, 619.5 (M - 7CO)²⁻, 605.5 (M -8CO)²⁻, 591.5 (M - 9CO)²⁻, 577.5 (M - 10CO)²⁻, 563.5 (M -11CO)²⁻, 549.5 (M - 12CO)²⁻, 535.5 (M - 13CO)²⁻, 521.5 (M $- 14CO)^{2-}$, 507.5 (M $- 15CO)^{2-}$. The ¹H NMR spectrum (300 and 500 MHz) contained numerous poorly resolved signals corresponding to the expected mixture of isomers and associated with the NEt₄⁺ and N(n-Bu)₄⁺ cations.

X-ray Structural Analyses of [NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -HC₂-(Me)C=CH₂](NEt₄·3a),[NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -HC₂CH₂OCH₂-C=CH)] (NEt₄·4a), [RuCo₂(CO)₉(μ_3 - η^2 -MeOC(O)C₂C(O)OMe] (6), [NEt₄][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C=CSiMe₃)] (NEt₄·11b), [NEt₄][RuCo₃(CO)₉(PPh₃)(μ_4 - η^2 -Me₃SiC₂C=CSiMe₃)] (NEt₄· 14), and [*n*-Bu₄N][RuCo₃(CO)₁₀(μ_4 - η^2 -Me₃SiC₂C=CH)] ([N(*n*-Bu)₄]·15a). A summary of the crystal and refinement data for NEt₄· **3a**, NEt₄•**4a**, **6**, NEt₄•**11b**, NEt₄•**14**, and [N(*n*-Bu)₄]•**15a**, is given in Table 7. Single crystals were mounted on a Nonius Kappa-CCD area detector diffractometer (Mo K α , $\lambda = 0.71073$ Å). The complete conditions of data collection (Denzo software) and structure refinements are given in Table 7. The cell parameters were determined from reflections taken from one set of 10 frames (1.0° steps in ϕ angle), each at 20 s exposure. The structures were solved using direct methods (SIR97) and refined against F^2 using the SHELXL97 software.^{40,41} The absorption was corrected empirically with Sortav.⁴² All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were generated according to stereochemistry and refined using a riding model in SHELXL97.

Acknowledgment. We thank Dr. C. Estournès (IPCMS Strasbourg) for the TEM and magnetic studies and helpful discussions. We are grateful to the CNRS, the Université Louis Pasteur Strasbourg and the Ministère de la Recherche (Paris) (ACI Nanostructures 2001) for financial support. This project was also supported by the Fonds International de Coopération Universitaire—FICU (AUPELF-UREF, Agence Universitaire de la Francophonie) and by the International Research Training Group 532 "Physical Methods for the Structural Investigation of New Materials" (DFG Bonn, CNRS, Ministère de la Recherche, Paris).

Supporting Information Available: Crystallographic data for NEt₄·3a, NEt₄·4a, 6, NEt₄·11b, NEt₄·14, and $[N(n-Bu)_4]$ ·15 in CIF format. Views of the molecular structures of cluster 6 and the anionic clusters in 3a, 4a, 11b, 14, and 15a. This material is

⁽⁴⁰⁾ Kappa CCD Operation Manual; Nonius B.V.: Delft, The Netherlands, 1997.

⁽⁴¹⁾ Sheldrick, G. M. SHELXL97, Program for the refinement of crystal structures; University of Göttingen; Göttingen, Germany, 1997.

⁽⁴²⁾ Blessing, R. H. Crystallogr. Rev. 1987, 1, 3-58.

available free of charge via the Internet at http://pubs.acs.org. This material has also been deposited in CIF format with the Cambridge Crystallographic Data Centre as Supplementary Publication No. CCDC-218645-218650. Copies of the data can be obtained free of

charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax, (+44)1223-336-033; e-mail, deposit@ ccdc.cam.ac.uk). IC034832K